This is the description of the TCP/IP protocol for the IO-16 Bricklet 2.0. General information and technical specifications for the IO-16 Bricklet 2.0 are summarized in its hardware description.
A general description of the TCP/IP protocol structure can be found here.
The Bricklet has sixteen channels that are named 0 to 15 in the API. The corresponding connectors on the Bricklet are labeled A0 to A7 for channel 0 to 7 and B0 to B7 for channels 8 to 15.
BrickletIO16V2.
set_value
¶Function ID: |
|
---|---|
Request: |
|
Response: |
|
Sets the output value of all sixteen channels. A value of true or false outputs logic 1 or logic 0 respectively on the corresponding channel.
Use set_selected_value
to change only one output channel state.
For example: (True, True, False, False, ..., False) will turn the channels 0-1 high and the channels 2-15 low.
All running monoflop timers will be aborted if this function is called.
Note
This function does nothing for channels that are configured as input. Pull-up
resistors can be switched on with set_configuration
.
BrickletIO16V2.
get_value
¶Function ID: |
|
---|---|
Request: |
|
Response: |
|
Returns the logic levels that are currently measured on the channels. This function works if the channel is configured as input as well as if it is configured as output.
BrickletIO16V2.
set_selected_value
¶Function ID: |
|
---|---|
Request: |
|
Response: |
|
Sets the output value of a specific channel without affecting the other channels.
A running monoflop timer for the specific channel will be aborted if this function is called.
Note
This function does nothing for channels that are configured as input. Pull-up
resistors can be switched on with set_configuration
.
BrickletIO16V2.
set_configuration
¶Function ID: |
|
---|---|
Request: |
|
Response: |
|
Configures the value and direction of a specific channel. Possible directions are 'i' and 'o' for input and output.
If the direction is configured as output, the value is either high or low (set as true or false).
If the direction is configured as input, the value is either pull-up or default (set as true or false).
For example:
A running monoflop timer for the specific channel will be aborted if this function is called.
The following meanings are defined for the elements of this function:
For direction:
BrickletIO16V2.
get_configuration
¶Function ID: |
|
---|---|
Request: |
|
Response: |
|
Returns the channel configuration as set by set_configuration
.
The following meanings are defined for the elements of this function:
For direction:
BrickletIO16V2.
set_monoflop
¶Function ID: |
|
---|---|
Request: |
|
Response: |
|
Configures a monoflop of the specified channel.
The second parameter is the desired value of the specified channel. A true means relay closed and a false means relay open.
The third parameter indicates the time that the channels should hold the value.
If this function is called with the parameters (0, 1, 1500) channel 0 will close and in 1.5s channel 0 will open again
A monoflop can be used as a fail-safe mechanism. For example: Lets assume you have a RS485 bus and a IO-16 Bricklet 2.0 connected to one of the slave stacks. You can now call this function every second, with a time parameter of two seconds and channel 0 closed. Channel 0 will be closed all the time. If now the RS485 connection is lost, then channel 0 will be opened in at most two seconds.
BrickletIO16V2.
get_monoflop
¶Function ID: |
|
---|---|
Request: |
|
Response: |
|
Returns (for the given channel) the current value and the time as set by
set_monoflop
as well as the remaining time until the value flips.
If the timer is not running currently, the remaining time will be returned as 0.
BrickletIO16V2.
get_edge_count
¶Function ID: |
|
---|---|
Request: |
|
Response: |
|
Returns the current value of the edge counter for the selected channel. You can
configure the edges that are counted with set_edge_count_configuration
.
If you set the reset counter to true, the count is set back to 0 directly after it is read.
BrickletIO16V2.
set_edge_count_configuration
¶Function ID: |
|
---|---|
Request: |
|
Response: |
|
Configures the edge counter for a specific channel.
The edge type parameter configures if rising edges, falling edges or both are counted if the channel is configured for input. Possible edge types are:
Configuring an edge counter resets its value to 0.
If you don't know what any of this means, just leave it at default. The default configuration is very likely OK for you.
The following meanings are defined for the elements of this function:
For edge_type:
BrickletIO16V2.
get_edge_count_configuration
¶Function ID: |
|
---|---|
Request: |
|
Response: |
|
Returns the edge type and debounce time for the selected channel as set by
set_edge_count_configuration
.
The following meanings are defined for the elements of this function:
For edge_type:
BrickletIO16V2.
get_spitfp_error_count
¶Function ID: |
|
---|---|
Request: |
|
Response: |
|
Returns the error count for the communication between Brick and Bricklet.
The errors are divided into
The errors counts are for errors that occur on the Bricklet side. All Bricks have a similar function that returns the errors on the Brick side.
BrickletIO16V2.
set_status_led_config
¶Function ID: |
|
---|---|
Request: |
|
Response: |
|
Sets the status LED configuration. By default the LED shows communication traffic between Brick and Bricklet, it flickers once for every 10 received data packets.
You can also turn the LED permanently on/off or show a heartbeat.
If the Bricklet is in bootloader mode, the LED is will show heartbeat by default.
The following meanings are defined for the elements of this function:
For config:
BrickletIO16V2.
get_status_led_config
¶Function ID: |
|
---|---|
Request: |
|
Response: |
|
Returns the configuration as set by set_status_led_config
The following meanings are defined for the elements of this function:
For config:
BrickletIO16V2.
get_chip_temperature
¶Function ID: |
|
---|---|
Request: |
|
Response: |
|
Returns the temperature as measured inside the microcontroller. The value returned is not the ambient temperature!
The temperature is only proportional to the real temperature and it has bad accuracy. Practically it is only useful as an indicator for temperature changes.
BrickletIO16V2.
reset
¶Function ID: |
|
---|---|
Request: |
|
Response: |
|
Calling this function will reset the Bricklet. All configurations will be lost.
After a reset you have to create new device objects, calling functions on the existing ones will result in undefined behavior!
BrickletIO16V2.
get_identity
¶Function ID: |
|
---|---|
Request: |
|
Response: |
|
Returns the UID, the UID where the Bricklet is connected to, the position, the hardware and firmware version as well as the device identifier.
The position can be 'a', 'b', 'c', 'd', 'e', 'f', 'g' or 'h' (Bricklet Port). A Bricklet connected to an Isolator Bricklet is always at position 'z'.
The device identifier numbers can be found here.
BrickletIO16V2.
set_input_value_callback_configuration
¶Function ID: |
|
---|---|
Request: |
|
Response: |
|
This callback can be configured per channel.
The period is the period with which the CALLBACK_INPUT_VALUE
callback is triggered periodically. A value of 0 turns the callback off.
If the value has to change-parameter is set to true, the callback is only triggered after the value has changed. If the value didn't change within the period, the callback is triggered immediately on change.
If it is set to false, the callback is continuously triggered with the period, independent of the value.
BrickletIO16V2.
get_input_value_callback_configuration
¶Function ID: |
|
---|---|
Request: |
|
Response: |
|
Returns the callback configuration as set by
set_input_value_callback_configuration
.
BrickletIO16V2.
set_all_input_value_callback_configuration
¶Function ID: |
|
---|---|
Request: |
|
Response: |
|
The period is the period with which the CALLBACK_ALL_INPUT_VALUE
callback is triggered periodically. A value of 0 turns the callback off.
If the value has to change-parameter is set to true, the callback is only triggered after the value has changed. If the value didn't change within the period, the callback is triggered immediately on change.
If it is set to false, the callback is continuously triggered with the period, independent of the value.
BrickletIO16V2.
get_all_input_value_callback_configuration
¶Function ID: |
|
---|---|
Request: |
|
Response: |
|
Returns the callback configuration as set by
set_all_input_value_callback_configuration
.
BrickletIO16V2.
CALLBACK_INPUT_VALUE
¶Function ID: |
|
---|---|
Response: |
|
This callback is triggered periodically according to the configuration set by
set_input_value_callback_configuration
.
The parameters are the channel, a value-changed indicator and the actual value for the channel. The changed parameter is true if the value has changed since the last callback.
BrickletIO16V2.
CALLBACK_ALL_INPUT_VALUE
¶Function ID: |
|
---|---|
Response: |
|
This callback is triggered periodically according to the configuration set by
set_all_input_value_callback_configuration
.
The response values are the same as get_value
. Additional the
changed parameter is true if the value has changed since
the last callback.
BrickletIO16V2.
CALLBACK_MONOFLOP_DONE
¶Function ID: |
|
---|---|
Response: |
|
This callback is triggered whenever a monoflop timer reaches 0. The response values contain the channel and the current value of the channel (the value after the monoflop).
Internal functions are used for maintenance tasks such as flashing a new firmware of changing the UID of a Bricklet. These task should be performed using Brick Viewer instead of using the internal functions directly.
BrickletIO16V2.
set_bootloader_mode
¶Function ID: |
|
---|---|
Request: |
|
Response: |
|
Sets the bootloader mode and returns the status after the requested mode change was instigated.
You can change from bootloader mode to firmware mode and vice versa. A change from bootloader mode to firmware mode will only take place if the entry function, device identifier and CRC are present and correct.
This function is used by Brick Viewer during flashing. It should not be necessary to call it in a normal user program.
The following meanings are defined for the elements of this function:
For mode:
For status:
BrickletIO16V2.
get_bootloader_mode
¶Function ID: |
|
---|---|
Request: |
|
Response: |
|
Returns the current bootloader mode, see set_bootloader_mode
.
The following meanings are defined for the elements of this function:
For mode:
BrickletIO16V2.
set_write_firmware_pointer
¶Function ID: |
|
---|---|
Request: |
|
Response: |
|
Sets the firmware pointer for write_firmware
. The pointer has
to be increased by chunks of size 64. The data is written to flash
every 4 chunks (which equals to one page of size 256).
This function is used by Brick Viewer during flashing. It should not be necessary to call it in a normal user program.
BrickletIO16V2.
write_firmware
¶Function ID: |
|
---|---|
Request: |
|
Response: |
|
Writes 64 Bytes of firmware at the position as written by
set_write_firmware_pointer
before. The firmware is written
to flash every 4 chunks.
You can only write firmware in bootloader mode.
This function is used by Brick Viewer during flashing. It should not be necessary to call it in a normal user program.
BrickletIO16V2.
write_uid
¶Function ID: |
|
---|---|
Request: |
|
Response: |
|
Writes a new UID into flash. If you want to set a new UID you have to decode the Base58 encoded UID string into an integer first.
We recommend that you use Brick Viewer to change the UID.
BrickletIO16V2.
read_uid
¶Function ID: |
|
---|---|
Request: |
|
Response: |
|
Returns the current UID as an integer. Encode as Base58 to get the usual string version.