Python - NFC/RFID Bricklet

This is the description of the Python API bindings for the NFC/RFID Bricklet. General information and technical specifications for the NFC/RFID Bricklet are summarized in its hardware description.

An installation guide for the Python API bindings is part of their general description.

Examples

The example code below is Public Domain (CC0 1.0).

Scan For Tags

Download (example_scan_for_tags.py)

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
#!/usr/bin/env python
# -*- coding: utf-8 -*-

HOST = "localhost"
PORT = 4223
UID = "XYZ" # Change XYZ to the UID of your NFC/RFID Bricklet

from tinkerforge.ip_connection import IPConnection
from tinkerforge.bricklet_nfc_rfid import BrickletNFCRFID

tag_type = 0

# Callback function for state changed callback
def cb_state_changed(state, idle, nr):
    if state == nr.STATE_REQUEST_TAG_ID_READY:
        ret = nr.get_tag_id()
        print("Found tag of type " + str(ret.tag_type) + " with ID [" +
              " ".join(map(str, map(hex, ret.tid[:ret.tid_length]))) + "]")

    # Cycle through all types
    if idle:
        global tag_type
        tag_type = (tag_type + 1) % 3
        nr.request_tag_id(tag_type)

if __name__ == "__main__":
    ipcon = IPConnection() # Create IP connection
    nr = BrickletNFCRFID(UID, ipcon) # Create device object

    ipcon.connect(HOST, PORT) # Connect to brickd
    # Don't use device before ipcon is connected

    # Register state changed callback to function cb_state_changed
    nr.register_callback(nr.CALLBACK_STATE_CHANGED,
                         lambda x, y: cb_state_changed(x, y, nr))

    # Start scan loop
    nr.request_tag_id(nr.TAG_TYPE_MIFARE_CLASSIC)

    input("Press key to exit\n") # Use raw_input() in Python 2
    ipcon.disconnect()

Write Read Type2

Download (example_write_read_type2.py)

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
#!/usr/bin/env python
# -*- coding: utf-8 -*-

HOST = "localhost"
PORT = 4223
UID = "XYZ" # Change XYZ to the UID of your NFC/RFID Bricklet

from tinkerforge.ip_connection import IPConnection
from tinkerforge.bricklet_nfc_rfid import BrickletNFCRFID

# Callback function for state changed callback
def cb_state_changed(state, idle, nr):
    if state == nr.STATE_REQUEST_TAG_ID_READY:
        print("Tag found")

        # Write 16 byte to pages 5-8
        data_write = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]
        nr.write_page(5, data_write)
        print("Writing data...")
    elif state == nr.STATE_WRITE_PAGE_READY:
        # Request pages 5-8
        nr.request_page(5)
        print("Requesting data...")
    elif state == nr.STATE_REQUEST_PAGE_READY:
        # Get and print pages
        data = nr.get_page()
        print("Read data: [" + " ".join(map(str, data)) + "]")
    elif state & (1 << 6):
        # All errors have bit 6 set
        print("Error: " + str(state))

if __name__ == "__main__":
    ipcon = IPConnection() # Create IP connection
    nr = BrickletNFCRFID(UID, ipcon) # Create device object

    ipcon.connect(HOST, PORT) # Connect to brickd
    # Don't use device before ipcon is connected

    # Register state changed callback to function cb_state_changed
    nr.register_callback(nr.CALLBACK_STATE_CHANGED,
                         lambda x, y: cb_state_changed(x, y, nr))

    # Select NFC Forum Type 2 tag
    nr.request_tag_id(nr.TAG_TYPE_TYPE2)

    input("Press key to exit\n") # Use raw_input() in Python 2
    ipcon.disconnect()

Write Ndef Message

Download (example_write_ndef_message.py)

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
#!/usr/bin/env python
# -*- coding: utf-8 -*-

# The following specifications have been used
# as a basis for writing this example.
#
# NFC Data Exchange Format (NDEF), NDEF 1.0:
# https://github.com/Tinkerforge/nfc-rfid-bricklet/raw/master/datasheets/specification_ndef.pdf
#
# Type 1 Tag Operation Specification, T1TOP 1.1:
# https://github.com/Tinkerforge/nfc-rfid-bricklet/raw/master/datasheets/specification_type1.pdf
#
# Type 2 Tag Operation Specification, T2TOP 1.1:
# https://github.com/Tinkerforge/nfc-rfid-bricklet/raw/master/datasheets/specification_type2.pdf

from tinkerforge.ip_connection import IPConnection
from tinkerforge.bricklet_nfc_rfid import BrickletNFCRFID

try:
    from queue import Queue
except ImportError:
    from Queue import Queue

from pprint import pprint
import os

class NdefMessage:
    tag_type = None
    records = []
    capability_container = [0, 0, 0, 0]

    def __init__(self, tag_type):
        self.tag_type = tag_type

    def add_record(self, record):
        self.records.append(record)

        # Set end and begin flags as needed
        if len(self.records) == 1:
            record.begin = True
            record.end = True
        else:
            self.records[-2].end = False
            self.records[-1].end = True

    def set_capability_container(self, version, tag_size, read_write_access):
        # Magic number to indicate NFC Forum defined data is stored
        self.capability_container[0] = 0xE1
        self.capability_container[1] = version

        if self.tag_type == BrickletNFCRFID.TAG_TYPE_TYPE1:
            self.capability_container[2] = tag_size/8 - 1
        else:
            self.capability_container[2] = tag_size/8

        self.capability_container[3] = read_write_access

    def get_raw_data_in_chunks(self):
        raw_data = []

        for record in self.records:
            raw_data.extend(record.get_raw_data())

        # Use three consecutive byte format if necessary, see 2.3 TLV blocks
        data_len = len(raw_data)

        if data_len < 0xFF:
            tlv_ndef = [0x03, data_len]
        else:
            tlv_ndef = [0x03, 0xFF, data_len >> 8, data_len % 256]

        if self.tag_type == BrickletNFCRFID.TAG_TYPE_TYPE1:
            # CC set by set_capability_container
            # default lock and memory TLVs
            # NDEF TLV
            # NDEF message
            # Terminator TLV
            raw_data = self.capability_container + \
                       [0x01, 0x03, 0xF2, 0x30, 0x33, 0x02, 0x03, 0xF0, 0x02, 0x03] + \
                       tlv_ndef + \
                       raw_data + \
                       [0xFE]
        elif self.tag_type == BrickletNFCRFID.TAG_TYPE_TYPE2:
            # CC set by set_capability_container
            # NDEF TLV
            # NDEF message
            # Terminator TLV
            raw_data = self.capability_container + \
                       tlv_ndef + \
                       raw_data + \
                       [0xFE]
        else:
            # TODO: We could support TAG_TYPE_MIFARE_CLASSIC here, but Mifare
            # Classic it is not supported in modern smart phones anyway.
            return [[]]

        chunks = []

        for i in range(0, len(raw_data), 16):
            chunks.append(raw_data[i:i+16])

        last_chunk_length = len(chunks[-1])

        if last_chunk_length < 16:
            chunks[-1].extend([0]*(16-last_chunk_length))

        return chunks

class NdefRecord:
    FLAG_ID_LENGTH     = 1 << 3
    FLAG_SHORT_RECORD  = 1 << 4
    FLAG_CHUNK         = 1 << 5
    FLAG_MESSAGE_END   = 1 << 6
    FLAG_MESSAGE_BEGIN = 1 << 7

    TNF_EMPTY          = 0x0
    TNF_WELL_KNOWN     = 0x01
    TNF_MIME_MEDIA     = 0x02
    TNF_ABSOLUTE_URI   = 0x03
    TNF_EXTERNAL_TYPE  = 0x04
    TNF_UNKNOWN        = 0x05
    TNF_UNCHANGED      = 0x06
    TNF_RESERVED       = 0x07

    NDEF_URIPREFIX_NONE         = 0x00
    NDEF_URIPREFIX_HTTP_WWWDOT  = 0x01
    NDEF_URIPREFIX_HTTPS_WWWDOT = 0x02
    NDEF_URIPREFIX_HTTP         = 0x03
    NDEF_URIPREFIX_HTTPS        = 0x04
    NDEF_URIPREFIX_TEL          = 0x05
    NDEF_URIPREFIX_MAILTO       = 0x06
    NDEF_URIPREFIX_FTP_ANONAT   = 0x07
    NDEF_URIPREFIX_FTP_FTPDOT   = 0x08
    NDEF_URIPREFIX_FTPS         = 0x09
    NDEF_URIPREFIX_SFTP         = 0x0A
    NDEF_URIPREFIX_SMB          = 0x0B
    NDEF_URIPREFIX_NFS          = 0x0C
    NDEF_URIPREFIX_FTP          = 0x0D
    NDEF_URIPREFIX_DAV          = 0x0E
    NDEF_URIPREFIX_NEWS         = 0x0F
    NDEF_URIPREFIX_TELNET       = 0x10
    NDEF_URIPREFIX_IMAP         = 0x11
    NDEF_URIPREFIX_RTSP         = 0x12
    NDEF_URIPREFIX_URN          = 0x13
    NDEF_URIPREFIX_POP          = 0x14
    NDEF_URIPREFIX_SIP          = 0x15
    NDEF_URIPREFIX_SIPS         = 0x16
    NDEF_URIPREFIX_TFTP         = 0x17
    NDEF_URIPREFIX_BTSPP        = 0x18
    NDEF_URIPREFIX_BTL2CAP      = 0x19
    NDEF_URIPREFIX_BTGOEP       = 0x1A
    NDEF_URIPREFIX_TCPOBEX      = 0x1B
    NDEF_URIPREFIX_IRDAOBEX     = 0x1C
    NDEF_URIPREFIX_FILE         = 0x1D
    NDEF_URIPREFIX_URN_EPC_ID   = 0x1E
    NDEF_URIPREFIX_URN_EPC_TAG  = 0x1F
    NDEF_URIPREFIX_URN_EPC_PAT  = 0x20
    NDEF_URIPREFIX_URN_EPC_RAW  = 0x21
    NDEF_URIPREFIX_URN_EPC      = 0x22
    NDEF_URIPREFIX_URN_NFC      = 0x23

    NDEF_TYPE_MIME              = 0x02
    NDEF_TYPE_URI               = 0x55
    NDEF_TYPE_TEXT              = 0x54

    begin = False
    end = False

    tnf = 0
    record_type = None
    payload = None
    identifier = None

    def set_identifier(self, identifier):
        self.identifier = identifier

    def get_raw_data(self):
        if self.record_type == None or self.payload == None:
            return []

        # Construct tnf and flags (byte 0 of header)
        header = [self.tnf]

        if self.begin:
            header[0] |= NdefRecord.FLAG_MESSAGE_BEGIN

        if self.end:
            header[0] |= NdefRecord.FLAG_MESSAGE_END

        if len(self.payload) < 256:
            header[0] |= NdefRecord.FLAG_SHORT_RECORD

        if self.identifier != None:
            header[0] |= NdefRecord.FLAG_ID_LENGTH

        # Type length (byte 1 of header)
        header.append(len(self.record_type))

        # Payload length (byte 2 of header)
        # TODO: payload > 255?
        header.append(len(self.payload))

        # ID length (byte 3 of header)
        if self.identifier != None:
            header.append(len(self.identifier))

        # Record type (byte 4ff of header)
        header.extend(self.record_type)

        # ID
        if self.identifier != None:
            header.extend(self.identifier)

        return header + self.payload

class NdefTextRecord(NdefRecord):
    # Call with text and ISO/IANA language code
    def __init__(self, text, language='en'):
        self.tnf = NdefRecord.TNF_WELL_KNOWN
        self.record_type = [NdefRecord.NDEF_TYPE_TEXT]

        lang_list = map(ord, language)
        text_list = map(ord, text)

        # Text Record Content: Status byte, ISO/IANA language code, text
        # See NDEF 1.0: 3.2.1
        self.payload = [len(lang_list)] + lang_list + text_list

class NdefUriRecord(NdefRecord):
    def __init__(self, uri, uri_prefix=NdefRecord.NDEF_URIPREFIX_NONE):
        self.tnf = NdefRecord.TNF_WELL_KNOWN
        self.record_type = [NdefRecord.NDEF_TYPE_URI]

        uri_list = map(ord, uri)

        # Text Record Content: URI prefix, URI
        # See NDEF 1.0: 3.2.2
        self.payload = [uri_prefix] + uri_list

class NdefMediaRecord(NdefRecord):
    def __init__(self, mime_type, data):
        self.tnf = NdefRecord.TNF_MIME_MEDIA
        self.record_type = map(ord, mime_type)

        if isinstance(data, str):
            self.payload = map(ord, data)
        else:
            self.payload = data

class ExampleNdef:
    HOST = "localhost"
    PORT = 4223
    UID = "XYZ" # Change XYZ to the UID of your NFC/RFID Bricklet

    state_queue = Queue()
    tag_type = None
    tag_size = None

    def __init__(self, tag_type, tag_size=512):
        self.tag_type = tag_type
        self.tag_size = tag_size
        self.ipcon = IPConnection() # Create IP connection
        self.nr = BrickletNFCRFID(self.UID, self.ipcon) # Create device object

        self.ipcon.connect(self.HOST, self.PORT) # Connect to brickd

        self.nr.register_callback(self.nr.CALLBACK_STATE_CHANGED, self.state_changed)

    def write_message(self):
        chunks = self.message.get_raw_data_in_chunks()
        print("Trying to write the follwing data to the tag:")
        pprint(chunks)

        self.nr.request_tag_id(self.tag_type)
        state = self.state_queue.get()

        if state != self.nr.STATE_REQUEST_TAG_ID:
            return -1

        state = self.state_queue.get()

        if state != self.nr.STATE_REQUEST_TAG_ID_READY:
            return -2

        # NFC Forum Type 1 start page is 1 (start of capability container)
        # NFC Forum Type 2 start page is 3 (start of capability container)
        if self.tag_type == self.nr.TAG_TYPE_TYPE1:
            current_page = 1
        else:
            current_page = 3

        for chunk in chunks:
            self.nr.write_page(current_page, chunk)
            state = self.state_queue.get()

            if state != self.nr.STATE_WRITE_PAGE:
                return -3

            state = self.state_queue.get()

            if state != self.nr.STATE_WRITE_PAGE_READY:
                return -4

            # NFC Forum Type 1 has 2 pages per chunk (16 byte)
            # NFC Forum Type 2 has 4 pages per chunk (16 byte)
            if self.tag_type == self.nr.TAG_TYPE_TYPE1:
                current_page += 2
            else:
                current_page += 4

        return 0

    def state_changed(self, state, idle):
        self.state_queue.put(state)

    def make_message_small(self):
        self.message = NdefMessage(self.tag_type)

        # Capabilities:
        # Version 1.0               (0x10)
        # Tag size bytes            (given by self.tag_size)
        # Read/write access for all (0x00)
        self.message.set_capability_container(0x10, self.tag_size, 0x00)

        record = NdefUriRecord('tinkerforge.com', NdefRecord.NDEF_URIPREFIX_HTTP_WWWDOT)
        self.message.add_record(record)

    def make_message_large(self):
        self.message = NdefMessage(self.tag_type)

        # Capabilities:
        # Version 1.0               (0x10)
        # Tag size bytes            (given by self.tag_size)
        # Read/write access for all (0x00)
        self.message.set_capability_container(0x10, self.tag_size, 0x00)

        rec1 = NdefTextRecord('Hello World', 'en')
        self.message.add_record(rec1)
        rec2 = NdefTextRecord('Hallo Welt', 'de')
        self.message.add_record(rec2)
        rec3 = NdefUriRecord('tinkerforge.com', NdefRecord.NDEF_URIPREFIX_HTTP_WWWDOT)
        self.message.add_record(rec3)
        text = '<html><head><title>Hello</title></head><body>World!</body></html>'
        rec4 = NdefMediaRecord('text/html', text)
        self.message.add_record(rec4)

        # To test an "image/png" you can can download the file from:
        # http://download.tinkerforge.com/_stuff/tf_16x16.png
        if os.path.isfile('tf_16x16.png'):
            with open('tf_16x16.png', 'rb') as f:
                logo = f.read()

            rec5 = NdefMediaRecord('image/png', map(ord, logo))
            self.message.add_record(rec5)

if __name__ == '__main__':
    example = ExampleNdef(tag_type=BrickletNFCRFID.TAG_TYPE_TYPE2, tag_size=888)
    #example.make_message_large() # Writes different texts, URI, html site and image
    example.make_message_small() # Writes simple URI record
    ret = example.write_message()

    if ret < 0:
        print('Could not write NDEF Message: ' + str(ret))
    else:
        print('NDEF Message written successfully')

API

Generally, every function of the Python bindings can throw an tinkerforge.ip_connection.Error exception that has a value and a description property. value can have different values:

  • Error.TIMEOUT = -1
  • Error.NOT_ADDED = -6 (unused since Python bindings version 2.0.0)
  • Error.ALREADY_CONNECTED = -7
  • Error.NOT_CONNECTED = -8
  • Error.INVALID_PARAMETER = -9
  • Error.NOT_SUPPORTED = -10
  • Error.UNKNOWN_ERROR_CODE = -11
  • Error.STREAM_OUT_OF_SYNC = -12
  • Error.INVALID_UID = -13
  • Error.NON_ASCII_CHAR_IN_SECRET = -14
  • Error.WRONG_DEVICE_TYPE = -15
  • Error.DEVICE_REPLACED = -16
  • Error.WRONG_RESPONSE_LENGTH = -17

All functions listed below are thread-safe.

Basic Functions

BrickletNFCRFID(uid, ipcon)
Parameters:
  • uid – Type: str
  • ipcon – Type: IPConnection
Returns:
  • nfc_rfid – Type: BrickletNFCRFID

Creates an object with the unique device ID uid:

nfc_rfid = BrickletNFCRFID("YOUR_DEVICE_UID", ipcon)

This object can then be used after the IP Connection is connected.

BrickletNFCRFID.request_tag_id(tag_type)
Parameters:
  • tag_type – Type: int, Range: See constants
Returns:
  • None

To read or write a tag that is in proximity of the NFC/RFID Bricklet you first have to call this function with the expected tag type as parameter. It is no problem if you don't know the tag type. You can cycle through the available tag types until the tag gives an answer to the request.

Currently the following tag types are supported:

  • Mifare Classic
  • NFC Forum Type 1
  • NFC Forum Type 2

After you call request_tag_id() the NFC/RFID Bricklet will try to read the tag ID from the tag. After this process is done the state will change. You can either register the CALLBACK_STATE_CHANGED callback or you can poll get_state() to find out about the state change.

If the state changes to RequestTagIDError it means that either there was no tag present or that the tag is of an incompatible type. If the state changes to RequestTagIDReady it means that a compatible tag was found and that the tag ID could be read out. You can now get the tag ID by calling get_tag_id().

If two tags are in the proximity of the NFC/RFID Bricklet, this function will cycle through the tags. To select a specific tag you have to call request_tag_id() until the correct tag id is found.

In case of any Error state the selection is lost and you have to start again by calling request_tag_id().

The following constants are available for this function:

For tag_type:

  • BrickletNFCRFID.TAG_TYPE_MIFARE_CLASSIC = 0
  • BrickletNFCRFID.TAG_TYPE_TYPE1 = 1
  • BrickletNFCRFID.TAG_TYPE_TYPE2 = 2
BrickletNFCRFID.get_tag_id()
Return Object:
  • tag_type – Type: int, Range: See constants
  • tid_length – Type: int, Range: [4, 7]
  • tid – Type: [int, ...], Length: 7, Range: [0 to 255]

Returns the tag type, tag ID and the length of the tag ID (4 or 7 bytes are possible length). This function can only be called if the NFC/RFID is currently in one of the Ready states. The returned ID is the ID that was saved through the last call of request_tag_id().

To get the tag ID of a tag the approach is as follows:

  1. Call request_tag_id()
  2. Wait for state to change to RequestTagIDReady (see get_state() or CALLBACK_STATE_CHANGED callback)
  3. Call get_tag_id()

The following constants are available for this function:

For tag_type:

  • BrickletNFCRFID.TAG_TYPE_MIFARE_CLASSIC = 0
  • BrickletNFCRFID.TAG_TYPE_TYPE1 = 1
  • BrickletNFCRFID.TAG_TYPE_TYPE2 = 2
BrickletNFCRFID.get_state()
Return Object:
  • state – Type: int, Range: See constants
  • idle – Type: bool

Returns the current state of the NFC/RFID Bricklet.

On startup the Bricklet will be in the Initialization state. The initialization will only take about 20ms. After that it changes to Idle.

The functions of this Bricklet can be called in the Idle state and all of the Ready and Error states.

Example: If you call request_page(), the state will change to RequestPage until the reading of the page is finished. Then it will change to either RequestPageReady if it worked or to RequestPageError if it didn't. If the request worked you can get the page by calling get_page().

The same approach is used analogously for the other API functions.

The following constants are available for this function:

For state:

  • BrickletNFCRFID.STATE_INITIALIZATION = 0
  • BrickletNFCRFID.STATE_IDLE = 128
  • BrickletNFCRFID.STATE_ERROR = 192
  • BrickletNFCRFID.STATE_REQUEST_TAG_ID = 2
  • BrickletNFCRFID.STATE_REQUEST_TAG_ID_READY = 130
  • BrickletNFCRFID.STATE_REQUEST_TAG_ID_ERROR = 194
  • BrickletNFCRFID.STATE_AUTHENTICATING_MIFARE_CLASSIC_PAGE = 3
  • BrickletNFCRFID.STATE_AUTHENTICATING_MIFARE_CLASSIC_PAGE_READY = 131
  • BrickletNFCRFID.STATE_AUTHENTICATING_MIFARE_CLASSIC_PAGE_ERROR = 195
  • BrickletNFCRFID.STATE_WRITE_PAGE = 4
  • BrickletNFCRFID.STATE_WRITE_PAGE_READY = 132
  • BrickletNFCRFID.STATE_WRITE_PAGE_ERROR = 196
  • BrickletNFCRFID.STATE_REQUEST_PAGE = 5
  • BrickletNFCRFID.STATE_REQUEST_PAGE_READY = 133
  • BrickletNFCRFID.STATE_REQUEST_PAGE_ERROR = 197
BrickletNFCRFID.authenticate_mifare_classic_page(page, key_number, key)
Parameters:
  • page – Type: int, Range: [0 to 216 - 1]
  • key_number – Type: int, Range: See constants
  • key – Type: [int, ...], Length: 6, Range: [0 to 255]
Returns:
  • None

Mifare Classic tags use authentication. If you want to read from or write to a Mifare Classic page you have to authenticate it beforehand. Each page can be authenticated with two keys: A (key_number = 0) and B (key_number = 1). A new Mifare Classic tag that has not yet been written to can be accessed with key A and the default key [0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF].

The approach to read or write a Mifare Classic page is as follows:

  1. Call request_tag_id()
  2. Wait for state to change to RequestTagIDReady (see get_state() or CALLBACK_STATE_CHANGED callback)
  3. If looking for a specific tag then call get_tag_id() and check if the expected tag was found, if it was not found go back to step 1
  4. Call authenticate_mifare_classic_page() with page and key for the page
  5. Wait for state to change to AuthenticatingMifareClassicPageReady (see get_state() or CALLBACK_STATE_CHANGED callback)
  6. Call request_page() or write_page() to read/write page

The following constants are available for this function:

For key_number:

  • BrickletNFCRFID.KEY_A = 0
  • BrickletNFCRFID.KEY_B = 1
BrickletNFCRFID.write_page(page, data)
Parameters:
  • page – Type: int, Range: [0 to 216 - 1]
  • data – Type: [int, ...], Length: 16, Range: [0 to 255]
Returns:
  • None

Writes 16 bytes starting from the given page. How many pages are written depends on the tag type. The page sizes are as follows:

  • Mifare Classic page size: 16 byte (one page is written)
  • NFC Forum Type 1 page size: 8 byte (two pages are written)
  • NFC Forum Type 2 page size: 4 byte (four pages are written)

The general approach for writing to a tag is as follows:

  1. Call request_tag_id()
  2. Wait for state to change to RequestTagIDReady (see get_state() or CALLBACK_STATE_CHANGED callback)
  3. If looking for a specific tag then call get_tag_id() and check if the expected tag was found, if it was not found got back to step 1
  4. Call write_page() with page number and data
  5. Wait for state to change to WritePageReady (see get_state() or CALLBACK_STATE_CHANGED callback)

If you use a Mifare Classic tag you have to authenticate a page before you can write to it. See authenticate_mifare_classic_page().

BrickletNFCRFID.request_page(page)
Parameters:
  • page – Type: int, Range: [0 to 216 - 1]
Returns:
  • None

Reads 16 bytes starting from the given page and stores them into a buffer. The buffer can then be read out with get_page(). How many pages are read depends on the tag type. The page sizes are as follows:

  • Mifare Classic page size: 16 byte (one page is read)
  • NFC Forum Type 1 page size: 8 byte (two pages are read)
  • NFC Forum Type 2 page size: 4 byte (four pages are read)

The general approach for reading a tag is as follows:

  1. Call request_tag_id()
  2. Wait for state to change to RequestTagIDReady (see get_state() or CALLBACK_STATE_CHANGED callback)
  3. If looking for a specific tag then call get_tag_id() and check if the expected tag was found, if it was not found got back to step 1
  4. Call request_page() with page number
  5. Wait for state to change to RequestPageReady (see get_state() or CALLBACK_STATE_CHANGED callback)
  6. Call get_page() to retrieve the page from the buffer

If you use a Mifare Classic tag you have to authenticate a page before you can read it. See authenticate_mifare_classic_page().

BrickletNFCRFID.get_page()
Returns:
  • data – Type: [int, ...], Length: 16, Range: [0 to 255]

Returns 16 bytes of data from an internal buffer. To fill the buffer with specific pages you have to call request_page() beforehand.

Advanced Functions

BrickletNFCRFID.get_identity()
Return Object:
  • uid – Type: str, Length: up to 8
  • connected_uid – Type: str, Length: up to 8
  • position – Type: chr, Range: ["a" to "h", "z"]
  • hardware_version – Type: [int, ...], Length: 3
    • 0: major – Type: int, Range: [0 to 255]
    • 1: minor – Type: int, Range: [0 to 255]
    • 2: revision – Type: int, Range: [0 to 255]
  • firmware_version – Type: [int, ...], Length: 3
    • 0: major – Type: int, Range: [0 to 255]
    • 1: minor – Type: int, Range: [0 to 255]
    • 2: revision – Type: int, Range: [0 to 255]
  • device_identifier – Type: int, Range: [0 to 216 - 1]

Returns the UID, the UID where the Bricklet is connected to, the position, the hardware and firmware version as well as the device identifier.

The position can be 'a', 'b', 'c', 'd', 'e', 'f', 'g' or 'h' (Bricklet Port). A Bricklet connected to an Isolator Bricklet is always at position 'z'.

The device identifier numbers can be found here. There is also a constant for the device identifier of this Bricklet.

Callback Configuration Functions

BrickletNFCRFID.register_callback(callback_id, function)
Parameters:
  • callback_id – Type: int
  • function – Type: callable
Returns:
  • None

Registers the given function with the given callback_id.

The available callback IDs with corresponding function signatures are listed below.

Callbacks

Callbacks can be registered to receive time critical or recurring data from the device. The registration is done with the register_callback() function of the device object. The first parameter is the callback ID and the second parameter the callback function:

def my_callback(param):
    print(param)

nfc_rfid.register_callback(BrickletNFCRFID.CALLBACK_EXAMPLE, my_callback)

The available constants with inherent number and type of parameters are described below.

Note

Using callbacks for recurring events is always preferred compared to using getters. It will use less USB bandwidth and the latency will be a lot better, since there is no round trip time.

BrickletNFCRFID.CALLBACK_STATE_CHANGED
Callback Parameters:
  • state – Type: int, Range: See constants
  • idle – Type: bool

This callback is called if the state of the NFC/RFID Bricklet changes. See get_state() for more information about the possible states.

The following constants are available for this function:

For state:

  • BrickletNFCRFID.STATE_INITIALIZATION = 0
  • BrickletNFCRFID.STATE_IDLE = 128
  • BrickletNFCRFID.STATE_ERROR = 192
  • BrickletNFCRFID.STATE_REQUEST_TAG_ID = 2
  • BrickletNFCRFID.STATE_REQUEST_TAG_ID_READY = 130
  • BrickletNFCRFID.STATE_REQUEST_TAG_ID_ERROR = 194
  • BrickletNFCRFID.STATE_AUTHENTICATING_MIFARE_CLASSIC_PAGE = 3
  • BrickletNFCRFID.STATE_AUTHENTICATING_MIFARE_CLASSIC_PAGE_READY = 131
  • BrickletNFCRFID.STATE_AUTHENTICATING_MIFARE_CLASSIC_PAGE_ERROR = 195
  • BrickletNFCRFID.STATE_WRITE_PAGE = 4
  • BrickletNFCRFID.STATE_WRITE_PAGE_READY = 132
  • BrickletNFCRFID.STATE_WRITE_PAGE_ERROR = 196
  • BrickletNFCRFID.STATE_REQUEST_PAGE = 5
  • BrickletNFCRFID.STATE_REQUEST_PAGE_READY = 133
  • BrickletNFCRFID.STATE_REQUEST_PAGE_ERROR = 197

Virtual Functions

Virtual functions don't communicate with the device itself, but operate only on the API bindings device object. They can be called without the corresponding IP Connection object being connected.

BrickletNFCRFID.get_api_version()
Return Object:
  • api_version – Type: [int, ...], Length: 3
    • 0: major – Type: int, Range: [0 to 255]
    • 1: minor – Type: int, Range: [0 to 255]
    • 2: revision – Type: int, Range: [0 to 255]

Returns the version of the API definition implemented by this API bindings. This is neither the release version of this API bindings nor does it tell you anything about the represented Brick or Bricklet.

BrickletNFCRFID.get_response_expected(function_id)
Parameters:
  • function_id – Type: int, Range: See constants
Returns:
  • response_expected – Type: bool

Returns the response expected flag for the function specified by the function ID parameter. It is true if the function is expected to send a response, false otherwise.

For getter functions this is enabled by default and cannot be disabled, because those functions will always send a response. For callback configuration functions it is enabled by default too, but can be disabled by set_response_expected(). For setter functions it is disabled by default and can be enabled.

Enabling the response expected flag for a setter function allows to detect timeouts and other error conditions calls of this setter as well. The device will then send a response for this purpose. If this flag is disabled for a setter function then no response is sent and errors are silently ignored, because they cannot be detected.

The following constants are available for this function:

For function_id:

  • BrickletNFCRFID.FUNCTION_REQUEST_TAG_ID = 1
  • BrickletNFCRFID.FUNCTION_AUTHENTICATE_MIFARE_CLASSIC_PAGE = 4
  • BrickletNFCRFID.FUNCTION_WRITE_PAGE = 5
  • BrickletNFCRFID.FUNCTION_REQUEST_PAGE = 6
BrickletNFCRFID.set_response_expected(function_id, response_expected)
Parameters:
  • function_id – Type: int, Range: See constants
  • response_expected – Type: bool
Returns:
  • None

Changes the response expected flag of the function specified by the function ID parameter. This flag can only be changed for setter (default value: false) and callback configuration functions (default value: true). For getter functions it is always enabled.

Enabling the response expected flag for a setter function allows to detect timeouts and other error conditions calls of this setter as well. The device will then send a response for this purpose. If this flag is disabled for a setter function then no response is sent and errors are silently ignored, because they cannot be detected.

The following constants are available for this function:

For function_id:

  • BrickletNFCRFID.FUNCTION_REQUEST_TAG_ID = 1
  • BrickletNFCRFID.FUNCTION_AUTHENTICATE_MIFARE_CLASSIC_PAGE = 4
  • BrickletNFCRFID.FUNCTION_WRITE_PAGE = 5
  • BrickletNFCRFID.FUNCTION_REQUEST_PAGE = 6
BrickletNFCRFID.set_response_expected_all(response_expected)
Parameters:
  • response_expected – Type: bool
Returns:
  • None

Changes the response expected flag for all setter and callback configuration functions of this device at once.

Constants

BrickletNFCRFID.DEVICE_IDENTIFIER

This constant is used to identify a NFC/RFID Bricklet.

The get_identity() function and the IPConnection.CALLBACK_ENUMERATE callback of the IP Connection have a device_identifier parameter to specify the Brick's or Bricklet's type.

BrickletNFCRFID.DEVICE_DISPLAY_NAME

This constant represents the human readable name of a NFC/RFID Bricklet.