This is the description of the Delphi/Lazarus API bindings for the IMU Brick 2.0. General information and technical specifications for the IMU Brick 2.0 are summarized in its hardware description.
An installation guide for the Delphi/Lazarus API bindings is part of their general description.
The example code below is Public Domain (CC0 1.0).
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 | program ExampleSimple;
{$ifdef MSWINDOWS}{$apptype CONSOLE}{$endif}
{$ifdef FPC}{$mode OBJFPC}{$H+}{$endif}
uses
SysUtils, IPConnection, BrickIMUV2;
type
TExample = class
private
ipcon: TIPConnection;
imu: TBrickIMUV2;
public
procedure Execute;
end;
const
HOST = 'localhost';
PORT = 4223;
UID = 'XXYYZZ'; { Change XXYYZZ to the UID of your IMU Brick 2.0 }
var
e: TExample;
procedure TExample.Execute;
var w, x, y, z: smallint;
begin
{ Create IP connection }
ipcon := TIPConnection.Create;
{ Create device object }
imu := TBrickIMUV2.Create(UID, ipcon);
{ Connect to brickd }
ipcon.Connect(HOST, PORT);
{ Don't use device before ipcon is connected }
{ Get current quaternion }
imu.GetQuaternion(w, x, y, z);
WriteLn(Format('Quaternion [W]: %f', [w/16383.0]));
WriteLn(Format('Quaternion [X]: %f', [x/16383.0]));
WriteLn(Format('Quaternion [Y]: %f', [y/16383.0]));
WriteLn(Format('Quaternion [Z]: %f', [z/16383.0]));
WriteLn('Press key to exit');
ReadLn;
ipcon.Destroy; { Calls ipcon.Disconnect internally }
end;
begin
e := TExample.Create;
e.Execute;
e.Destroy;
end.
|
Download (ExampleCallback.pas)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 | program ExampleCallback;
{$ifdef MSWINDOWS}{$apptype CONSOLE}{$endif}
{$ifdef FPC}{$mode OBJFPC}{$H+}{$endif}
uses
SysUtils, IPConnection, BrickIMUV2;
type
TExample = class
private
ipcon: TIPConnection;
imu: TBrickIMUV2;
public
procedure QuaternionCB(sender: TBrickIMUV2; const w: smallint; const x: smallint;
const y: smallint; const z: smallint);
procedure Execute;
end;
const
HOST = 'localhost';
PORT = 4223;
UID = 'XXYYZZ'; { Change XXYYZZ to the UID of your IMU Brick 2.0 }
var
e: TExample;
{ Callback procedure for quaternion callback }
procedure TExample.QuaternionCB(sender: TBrickIMUV2; const w: smallint; const x: smallint;
const y: smallint; const z: smallint);
begin
WriteLn(Format('Quaternion [W]: %f', [w/16383.0]));
WriteLn(Format('Quaternion [X]: %f', [x/16383.0]));
WriteLn(Format('Quaternion [Y]: %f', [y/16383.0]));
WriteLn(Format('Quaternion [Z]: %f', [z/16383.0]));
WriteLn('');
end;
procedure TExample.Execute;
begin
{ Create IP connection }
ipcon := TIPConnection.Create;
{ Create device object }
imu := TBrickIMUV2.Create(UID, ipcon);
{ Connect to brickd }
ipcon.Connect(HOST, PORT);
{ Don't use device before ipcon is connected }
{ Register quaternion callback to procedure QuaternionCB }
imu.OnQuaternion := {$ifdef FPC}@{$endif}QuaternionCB;
{ Set period for quaternion callback to 0.1s (100ms) }
imu.SetQuaternionPeriod(100);
WriteLn('Press key to exit');
ReadLn;
ipcon.Destroy; { Calls ipcon.Disconnect internally }
end;
begin
e := TExample.Create;
e.Execute;
e.Destroy;
end.
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 | program ExampleAllData;
{$ifdef MSWINDOWS}{$apptype CONSOLE}{$endif}
{$ifdef FPC}{$mode OBJFPC}{$H+}{$endif}
uses
SysUtils, IPConnection, BrickIMUV2;
type
TExample = class
private
ipcon: TIPConnection;
imu: TBrickIMUV2;
public
procedure AllDataCB(sender: TBrickIMUV2; const acceleration: TArray0To2OfInt16;
const magneticField: TArray0To2OfInt16;
const angularVelocity: TArray0To2OfInt16;
const eulerAngle: TArray0To2OfInt16;
const quaternion: TArray0To3OfInt16;
const linearAcceleration: TArray0To2OfInt16;
const gravityVector: TArray0To2OfInt16;
const temperature: shortint; const calibrationStatus: byte);
procedure Execute;
end;
const
HOST = 'localhost';
PORT = 4223;
UID = 'XXYYZZ'; { Change XXYYZZ to the UID of your IMU Brick 2.0 }
var
e: TExample;
{ Callback procedure for all data callback }
procedure TExample.AllDataCB(sender: TBrickIMUV2; const acceleration: TArray0To2OfInt16;
const magneticField: TArray0To2OfInt16;
const angularVelocity: TArray0To2OfInt16;
const eulerAngle: TArray0To2OfInt16;
const quaternion: TArray0To3OfInt16;
const linearAcceleration: TArray0To2OfInt16;
const gravityVector: TArray0To2OfInt16;
const temperature: shortint; const calibrationStatus: byte);
begin
WriteLn(Format('Acceleration [X]: %f m/s²', [acceleration[0]/100.0]));
WriteLn(Format('Acceleration [Y]: %f m/s²', [acceleration[1]/100.0]));
WriteLn(Format('Acceleration [Z]: %f m/s²', [acceleration[2]/100.0]));
WriteLn(Format('Magnetic Field [X]: %f µT', [magneticField[0]/16.0]));
WriteLn(Format('Magnetic Field [Y]: %f µT', [magneticField[1]/16.0]));
WriteLn(Format('Magnetic Field [Z]: %f µT', [magneticField[2]/16.0]));
WriteLn(Format('Angular Velocity [X]: %f °/s', [angularVelocity[0]/16.0]));
WriteLn(Format('Angular Velocity [Y]: %f °/s', [angularVelocity[1]/16.0]));
WriteLn(Format('Angular Velocity [Z]: %f °/s', [angularVelocity[2]/16.0]));
WriteLn(Format('Euler Angle [Heading]: %f °', [eulerAngle[0]/16.0]));
WriteLn(Format('Euler Angle [Roll]: %f °', [eulerAngle[1]/16.0]));
WriteLn(Format('Euler Angle [Pitch]: %f °', [eulerAngle[2]/16.0]));
WriteLn(Format('Quaternion [W]: %f', [quaternion[0]/16383.0]));
WriteLn(Format('Quaternion [X]: %f', [quaternion[1]/16383.0]));
WriteLn(Format('Quaternion [Y]: %f', [quaternion[2]/16383.0]));
WriteLn(Format('Quaternion [Z]: %f', [quaternion[3]/16383.0]));
WriteLn(Format('Linear Acceleration [X]: %f m/s²', [linearAcceleration[0]/100.0]));
WriteLn(Format('Linear Acceleration [Y]: %f m/s²', [linearAcceleration[1]/100.0]));
WriteLn(Format('Linear Acceleration [Z]: %f m/s²', [linearAcceleration[2]/100.0]));
WriteLn(Format('Gravity Vector [X]: %f m/s²', [gravityVector[0]/100.0]));
WriteLn(Format('Gravity Vector [Y]: %f m/s²', [gravityVector[1]/100.0]));
WriteLn(Format('Gravity Vector [Z]: %f m/s²', [gravityVector[2]/100.0]));
WriteLn(Format('Temperature: %d °C', [temperature]));
WriteLn(Format('Calibration Status: %d', [calibrationStatus]));
WriteLn('');
end;
procedure TExample.Execute;
begin
{ Create IP connection }
ipcon := TIPConnection.Create;
{ Create device object }
imu := TBrickIMUV2.Create(UID, ipcon);
{ Connect to brickd }
ipcon.Connect(HOST, PORT);
{ Don't use device before ipcon is connected }
{ Register all data callback to procedure AllDataCB }
imu.OnAllData := {$ifdef FPC}@{$endif}AllDataCB;
{ Set period for all data callback to 0.1s (100ms) }
imu.SetAllDataPeriod(100);
WriteLn('Press key to exit');
ReadLn;
ipcon.Destroy; { Calls ipcon.Disconnect internally }
end;
begin
e := TExample.Create;
e.Execute;
e.Destroy;
end.
|
Since Delphi does not support multiple return values directly, we use the
out
keyword to return multiple values from a function.
All functions and procedures listed below are thread-safe.
TBrickIMUV2.
Create
(const uid: string; ipcon: TIPConnection)¶Parameters: |
|
---|---|
Returns: |
|
Creates an object with the unique device ID uid
:
imuV2 := TBrickIMUV2.Create('YOUR_DEVICE_UID', ipcon);
This object can then be used after the IP Connection is connected.
TBrickIMUV2.
GetOrientation
(out heading: smallint; out roll: smallint; out pitch: smallint)¶Output Parameters: |
|
---|
Returns the current orientation (heading, roll, pitch) of the IMU Brick as independent Euler angles. Note that Euler angles always experience a gimbal lock. We recommend that you use quaternions instead, if you need the absolute orientation.
If you want to get the orientation periodically, it is recommended
to use the OnOrientation
callback and set the period with
SetOrientationPeriod
.
TBrickIMUV2.
GetLinearAcceleration
(out x: smallint; out y: smallint; out z: smallint)¶Output Parameters: |
|
---|
Returns the linear acceleration of the IMU Brick for the
x, y and z axis. The acceleration is in the range configured with
SetSensorConfiguration
.
The linear acceleration is the acceleration in each of the three axis of the IMU Brick with the influences of gravity removed.
It is also possible to get the gravity vector with the influence of linear
acceleration removed, see GetGravityVector
.
If you want to get the linear acceleration periodically, it is recommended
to use the OnLinearAcceleration
callback and set the period with
SetLinearAccelerationPeriod
.
TBrickIMUV2.
GetGravityVector
(out x: smallint; out y: smallint; out z: smallint)¶Output Parameters: |
|
---|
Returns the current gravity vector of the IMU Brick for the x, y and z axis.
The gravity vector is the acceleration that occurs due to gravity. Influences of additional linear acceleration are removed.
It is also possible to get the linear acceleration with the influence
of gravity removed, see GetLinearAcceleration
.
If you want to get the gravity vector periodically, it is recommended
to use the OnGravityVector
callback and set the period with
SetGravityVectorPeriod
.
TBrickIMUV2.
GetQuaternion
(out w: smallint; out x: smallint; out y: smallint; out z: smallint)¶Output Parameters: |
|
---|
Returns the current orientation (w, x, y, z) of the IMU Brick as quaternions.
You have to divide the return values by 16383 (14 bit) to get the usual range of -1.0 to +1.0 for quaternions.
If you want to get the quaternions periodically, it is recommended
to use the OnQuaternion
callback and set the period with
SetQuaternionPeriod
.
TBrickIMUV2.
GetAllData
(out acceleration: array [0..2] of smallint; out magneticField: array [0..2] of smallint; out angularVelocity: array [0..2] of smallint; out eulerAngle: array [0..2] of smallint; out quaternion: array [0..3] of smallint; out linearAcceleration: array [0..2] of smallint; out gravityVector: array [0..2] of smallint; out temperature: shortint; out calibrationStatus: byte)¶Output Parameters: |
|
---|
Return all of the available data of the IMU Brick.
GetAcceleration
)GetMagneticField
)GetAngularVelocity
)GetOrientation
)GetQuaternion
)GetLinearAcceleration
)GetGravityVector
)GetTemperature
)The calibration status consists of four pairs of two bits. Each pair of bits represents the status of the current calibration.
A value of 0 means for "not calibrated" and a value of 3 means "fully calibrated". In your program you should always be able to ignore the calibration status, it is used by the calibration window of the Brick Viewer and it can be ignored after the first calibration. See the documentation in the calibration window for more information regarding the calibration of the IMU Brick.
If you want to get the data periodically, it is recommended
to use the OnAllData
callback and set the period with
SetAllDataPeriod
.
TBrickIMUV2.
LedsOn
¶Turns the orientation and direction LEDs of the IMU Brick on.
TBrickIMUV2.
LedsOff
¶Turns the orientation and direction LEDs of the IMU Brick off.
TBrickIMUV2.
AreLedsOn
: boolean¶Returns: |
|
---|
Returns true if the orientation and direction LEDs of the IMU Brick are on, false otherwise.
TBrickIMUV2.
GetAcceleration
(out x: smallint; out y: smallint; out z: smallint)¶Output Parameters: |
|
---|
Returns the calibrated acceleration from the accelerometer for the
x, y and z axis. The acceleration is in the range configured with
SetSensorConfiguration
.
If you want to get the acceleration periodically, it is recommended
to use the OnAcceleration
callback and set the period with
SetAccelerationPeriod
.
TBrickIMUV2.
GetMagneticField
(out x: smallint; out y: smallint; out z: smallint)¶Output Parameters: |
|
---|
Returns the calibrated magnetic field from the magnetometer for the x, y and z axis.
If you want to get the magnetic field periodically, it is recommended
to use the OnMagneticField
callback and set the period with
SetMagneticFieldPeriod
.
TBrickIMUV2.
GetAngularVelocity
(out x: smallint; out y: smallint; out z: smallint)¶Output Parameters: |
|
---|
Returns the calibrated angular velocity from the gyroscope for the
x, y and z axis. The angular velocity is in the range configured with
SetSensorConfiguration
.
If you want to get the angular velocity periodically, it is recommended
to use the OnAngularVelocity
acallback nd set the period with
SetAngularVelocityPeriod
.
TBrickIMUV2.
GetTemperature
: shortint¶Returns: |
|
---|
Returns the temperature of the IMU Brick. The temperature is measured in the core of the BNO055 IC, it is not the ambient temperature
TBrickIMUV2.
SaveCalibration
: boolean¶Returns: |
|
---|
A call of this function saves the current calibration to be used as a starting point for the next restart of continuous calibration of the IMU Brick.
A return value of true means that the calibration could be used and false means that it could not be used (this happens if the calibration status is not "fully calibrated").
This function is used by the calibration window of the Brick Viewer, you should not need to call it in your program.
TBrickIMUV2.
SetSensorConfiguration
(const magnetometerRate: byte; const gyroscopeRange: byte; const gyroscopeBandwidth: byte; const accelerometerRange: byte; const accelerometerBandwidth: byte)¶Parameters: |
|
---|
Sets the available sensor configuration for the Magnetometer, Gyroscope and Accelerometer. The Accelerometer Range is user selectable in all fusion modes, all other configurations are auto-controlled in fusion mode.
The following constants are available for this function:
For magnetometerRate:
For gyroscopeRange:
For gyroscopeBandwidth:
For accelerometerRange:
For accelerometerBandwidth:
New in version 2.0.5 (Firmware).
TBrickIMUV2.
GetSensorConfiguration
(out magnetometerRate: byte; out gyroscopeRange: byte; out gyroscopeBandwidth: byte; out accelerometerRange: byte; out accelerometerBandwidth: byte)¶Output Parameters: |
|
---|
Returns the sensor configuration as set by SetSensorConfiguration
.
The following constants are available for this function:
For magnetometerRate:
For gyroscopeRange:
For gyroscopeBandwidth:
For accelerometerRange:
For accelerometerBandwidth:
New in version 2.0.5 (Firmware).
TBrickIMUV2.
SetSensorFusionMode
(const mode: byte)¶Parameters: |
|
---|
If the fusion mode is turned off, the functions GetAcceleration
,
GetMagneticField
and GetAngularVelocity
return uncalibrated
and uncompensated sensor data. All other sensor data getters return no data.
Since firmware version 2.0.6 you can also use a fusion mode without magnetometer. In this mode the calculated orientation is relative (with magnetometer it is absolute with respect to the earth). However, the calculation can't be influenced by spurious magnetic fields.
Since firmware version 2.0.13 you can also use a fusion mode without fast magnetometer calibration. This mode is the same as the normal fusion mode, but the fast magnetometer calibration is turned off. So to find the orientation the first time will likely take longer, but small magnetic influences might not affect the automatic calibration as much.
The following constants are available for this function:
For mode:
New in version 2.0.5 (Firmware).
TBrickIMUV2.
GetSensorFusionMode
: byte¶Returns: |
|
---|
Returns the sensor fusion mode as set by SetSensorFusionMode
.
The following constants are available for this function:
For mode:
New in version 2.0.5 (Firmware).
TBrickIMUV2.
SetSPITFPBaudrateConfig
(const enableDynamicBaudrate: boolean; const minimumDynamicBaudrate: longword)¶Parameters: |
|
---|
The SPITF protocol can be used with a dynamic baudrate. If the dynamic baudrate is enabled, the Brick will try to adapt the baudrate for the communication between Bricks and Bricklets according to the amount of data that is transferred.
The baudrate will be increased exponentially if lots of data is sent/received and decreased linearly if little data is sent/received.
This lowers the baudrate in applications where little data is transferred (e.g. a weather station) and increases the robustness. If there is lots of data to transfer (e.g. Thermal Imaging Bricklet) it automatically increases the baudrate as needed.
In cases where some data has to transferred as fast as possible every few seconds (e.g. RS485 Bricklet with a high baudrate but small payload) you may want to turn the dynamic baudrate off to get the highest possible performance.
The maximum value of the baudrate can be set per port with the function
SetSPITFPBaudrate
. If the dynamic baudrate is disabled, the baudrate
as set by SetSPITFPBaudrate
will be used statically.
New in version 2.0.10 (Firmware).
TBrickIMUV2.
GetSPITFPBaudrateConfig
(out enableDynamicBaudrate: boolean; out minimumDynamicBaudrate: longword)¶Output Parameters: |
|
---|
Returns the baudrate config, see SetSPITFPBaudrateConfig
.
New in version 2.0.10 (Firmware).
TBrickIMUV2.
GetSendTimeoutCount
(const communicationMethod: byte): longword¶Parameters: |
|
---|---|
Returns: |
|
Returns the timeout count for the different communication methods.
The methods 0-2 are available for all Bricks, 3-7 only for Master Bricks.
This function is mostly used for debugging during development, in normal operation the counters should nearly always stay at 0.
The following constants are available for this function:
For communicationMethod:
New in version 2.0.7 (Firmware).
TBrickIMUV2.
SetSPITFPBaudrate
(const brickletPort: char; const baudrate: longword)¶Parameters: |
|
---|
Sets the baudrate for a specific Bricklet port.
If you want to increase the throughput of Bricklets you can increase
the baudrate. If you get a high error count because of high
interference (see GetSPITFPErrorCount
) you can decrease the
baudrate.
If the dynamic baudrate feature is enabled, the baudrate set by this
function corresponds to the maximum baudrate (see SetSPITFPBaudrateConfig
).
Regulatory testing is done with the default baudrate. If CE compatibility or similar is necessary in your applications we recommend to not change the baudrate.
New in version 2.0.5 (Firmware).
TBrickIMUV2.
GetSPITFPBaudrate
(const brickletPort: char): longword¶Parameters: |
|
---|---|
Returns: |
|
Returns the baudrate for a given Bricklet port, see SetSPITFPBaudrate
.
New in version 2.0.5 (Firmware).
TBrickIMUV2.
GetSPITFPErrorCount
(const brickletPort: char; out errorCountACKChecksum: longword; out errorCountMessageChecksum: longword; out errorCountFrame: longword; out errorCountOverflow: longword)¶Parameters: |
|
---|---|
Output Parameters: |
|
Returns the error count for the communication between Brick and Bricklet.
The errors are divided into
The errors counts are for errors that occur on the Brick side. All Bricklets have a similar function that returns the errors on the Bricklet side.
New in version 2.0.5 (Firmware).
TBrickIMUV2.
EnableStatusLED
¶Enables the status LED.
The status LED is the blue LED next to the USB connector. If enabled is is on and it flickers if data is transfered. If disabled it is always off.
The default state is enabled.
TBrickIMUV2.
DisableStatusLED
¶Disables the status LED.
The status LED is the blue LED next to the USB connector. If enabled is is on and it flickers if data is transfered. If disabled it is always off.
The default state is enabled.
TBrickIMUV2.
IsStatusLEDEnabled
: boolean¶Returns: |
|
---|
Returns true if the status LED is enabled, false otherwise.
TBrickIMUV2.
GetChipTemperature
: smallint¶Returns: |
|
---|
Returns the temperature as measured inside the microcontroller. The value returned is not the ambient temperature!
The temperature is only proportional to the real temperature and it has an accuracy of ±15%. Practically it is only useful as an indicator for temperature changes.
TBrickIMUV2.
Reset
¶Calling this function will reset the Brick. Calling this function on a Brick inside of a stack will reset the whole stack.
After a reset you have to create new device objects, calling functions on the existing ones will result in undefined behavior!
TBrickIMUV2.
GetIdentity
(out uid: string; out connectedUid: string; out position: char; out hardwareVersion: array [0..2] of byte; out firmwareVersion: array [0..2] of byte; out deviceIdentifier: word)¶Output Parameters: |
|
---|
Returns the UID, the UID where the Brick is connected to, the position, the hardware and firmware version as well as the device identifier.
The position is the position in the stack from '0' (bottom) to '8' (top).
The device identifier numbers can be found here. There is also a constant for the device identifier of this Brick.
TBrickIMUV2.
SetAccelerationPeriod
(const period: longword)¶Parameters: |
|
---|
Sets the period with which the OnAcceleration
callback is triggered
periodically. A value of 0 turns the callback off.
TBrickIMUV2.
GetAccelerationPeriod
: longword¶Returns: |
|
---|
Returns the period as set by SetAccelerationPeriod
.
TBrickIMUV2.
SetMagneticFieldPeriod
(const period: longword)¶Parameters: |
|
---|
Sets the period with which the OnMagneticField
callback is triggered
periodically. A value of 0 turns the callback off.
TBrickIMUV2.
GetMagneticFieldPeriod
: longword¶Returns: |
|
---|
Returns the period as set by SetMagneticFieldPeriod
.
TBrickIMUV2.
SetAngularVelocityPeriod
(const period: longword)¶Parameters: |
|
---|
Sets the period with which the OnAngularVelocity
callback is
triggered periodically. A value of 0 turns the callback off.
TBrickIMUV2.
GetAngularVelocityPeriod
: longword¶Returns: |
|
---|
Returns the period as set by SetAngularVelocityPeriod
.
TBrickIMUV2.
SetTemperaturePeriod
(const period: longword)¶Parameters: |
|
---|
Sets the period with which the OnTemperature
callback is triggered
periodically. A value of 0 turns the callback off.
TBrickIMUV2.
GetTemperaturePeriod
: longword¶Returns: |
|
---|
Returns the period as set by SetTemperaturePeriod
.
TBrickIMUV2.
SetOrientationPeriod
(const period: longword)¶Parameters: |
|
---|
Sets the period with which the OnOrientation
callback is triggered
periodically. A value of 0 turns the callback off.
TBrickIMUV2.
GetOrientationPeriod
: longword¶Returns: |
|
---|
Returns the period as set by SetOrientationPeriod
.
TBrickIMUV2.
SetLinearAccelerationPeriod
(const period: longword)¶Parameters: |
|
---|
Sets the period with which the OnLinearAcceleration
callback is
triggered periodically. A value of 0 turns the callback off.
TBrickIMUV2.
GetLinearAccelerationPeriod
: longword¶Returns: |
|
---|
Returns the period as set by SetLinearAccelerationPeriod
.
TBrickIMUV2.
SetGravityVectorPeriod
(const period: longword)¶Parameters: |
|
---|
Sets the period with which the OnGravityVector
callback is triggered
periodically. A value of 0 turns the callback off.
TBrickIMUV2.
GetGravityVectorPeriod
: longword¶Returns: |
|
---|
Returns the period as set by SetGravityVectorPeriod
.
TBrickIMUV2.
SetQuaternionPeriod
(const period: longword)¶Parameters: |
|
---|
Sets the period with which the OnQuaternion
callback is triggered
periodically. A value of 0 turns the callback off.
TBrickIMUV2.
GetQuaternionPeriod
: longword¶Returns: |
|
---|
Returns the period as set by SetQuaternionPeriod
.
TBrickIMUV2.
SetAllDataPeriod
(const period: longword)¶Parameters: |
|
---|
Sets the period with which the OnAllData
callback is triggered
periodically. A value of 0 turns the callback off.
TBrickIMUV2.
GetAllDataPeriod
: longword¶Returns: |
|
---|
Returns the period as set by SetAllDataPeriod
.
Callbacks can be registered to receive time critical or recurring data from the device. The registration is done by assigning a procedure to an callback property of the device object:
procedure TExample.MyCallback(sender: TBrickIMUV2; const value: longint); begin WriteLn(Format('Value: %d', [value])); end; imuV2.OnExample := {$ifdef FPC}@{$endif}example.MyCallback;
The available callback properties and their parameter types are described below.
Note
Using callbacks for recurring events is always preferred compared to using getters. It will use less USB bandwidth and the latency will be a lot better, since there is no round trip time.
TBrickIMUV2.
OnAcceleration
¶procedure(sender: TBrickIMUV2; const x: smallint; const y: smallint; const z: smallint) of object;
Callback Parameters: |
|
---|
This callback is triggered periodically with the period that is set by
SetAccelerationPeriod
. The parameters are the acceleration
for the x, y and z axis.
TBrickIMUV2.
OnMagneticField
¶procedure(sender: TBrickIMUV2; const x: smallint; const y: smallint; const z: smallint) of object;
Callback Parameters: |
|
---|
This callback is triggered periodically with the period that is set by
SetMagneticFieldPeriod
. The parameters are the magnetic
field for the x, y and z axis.
TBrickIMUV2.
OnAngularVelocity
¶procedure(sender: TBrickIMUV2; const x: smallint; const y: smallint; const z: smallint) of object;
Callback Parameters: |
|
---|
This callback is triggered periodically with the period that is set by
SetAngularVelocityPeriod
. The parameters are the angular
velocity for the x, y and z axis.
TBrickIMUV2.
OnTemperature
¶procedure(sender: TBrickIMUV2; const temperature: shortint) of object;
Callback Parameters: |
|
---|
This callback is triggered periodically with the period that is set by
SetTemperaturePeriod
. The parameter is the temperature.
TBrickIMUV2.
OnLinearAcceleration
¶procedure(sender: TBrickIMUV2; const x: smallint; const y: smallint; const z: smallint) of object;
Callback Parameters: |
|
---|
This callback is triggered periodically with the period that is set by
SetLinearAccelerationPeriod
. The parameters are the
linear acceleration for the x, y and z axis.
TBrickIMUV2.
OnGravityVector
¶procedure(sender: TBrickIMUV2; const x: smallint; const y: smallint; const z: smallint) of object;
Callback Parameters: |
|
---|
This callback is triggered periodically with the period that is set by
SetGravityVectorPeriod
. The parameters gravity vector
for the x, y and z axis.
TBrickIMUV2.
OnOrientation
¶procedure(sender: TBrickIMUV2; const heading: smallint; const roll: smallint; const pitch: smallint) of object;
Callback Parameters: |
|
---|
This callback is triggered periodically with the period that is set by
SetOrientationPeriod
. The parameters are the orientation
(heading (yaw), roll, pitch) of the IMU Brick in Euler angles. See
GetOrientation
for details.
TBrickIMUV2.
OnQuaternion
¶procedure(sender: TBrickIMUV2; const w: smallint; const x: smallint; const y: smallint; const z: smallint) of object;
Callback Parameters: |
|
---|
This callback is triggered periodically with the period that is set by
SetQuaternionPeriod
. The parameters are the orientation
(w, x, y, z) of the IMU Brick in quaternions. See GetQuaternion
for details.
TBrickIMUV2.
OnAllData
¶procedure(sender: TBrickIMUV2; const acceleration: array [0..2] of smallint; const magneticField: array [0..2] of smallint; const angularVelocity: array [0..2] of smallint; const eulerAngle: array [0..2] of smallint; const quaternion: array [0..3] of smallint; const linearAcceleration: array [0..2] of smallint; const gravityVector: array [0..2] of smallint; const temperature: shortint; const calibrationStatus: byte) of object;
Callback Parameters: |
|
---|
This callback is triggered periodically with the period that is set by
SetAllDataPeriod
. The parameters are as for
GetAllData
.
Virtual functions don't communicate with the device itself, but operate only on the API bindings device object. They can be called without the corresponding IP Connection object being connected.
TBrickIMUV2.
GetAPIVersion
: array [0..2] of byte¶Output Parameters: |
|
---|
Returns the version of the API definition implemented by this API bindings. This is neither the release version of this API bindings nor does it tell you anything about the represented Brick or Bricklet.
TBrickIMUV2.
GetResponseExpected
(const functionId: byte): boolean¶Parameters: |
|
---|---|
Returns: |
|
Returns the response expected flag for the function specified by the function ID parameter. It is true if the function is expected to send a response, false otherwise.
For getter functions this is enabled by default and cannot be disabled,
because those functions will always send a response. For callback configuration
functions it is enabled by default too, but can be disabled by
SetResponseExpected
. For setter functions it is disabled by default
and can be enabled.
Enabling the response expected flag for a setter function allows to detect timeouts and other error conditions calls of this setter as well. The device will then send a response for this purpose. If this flag is disabled for a setter function then no response is sent and errors are silently ignored, because they cannot be detected.
The following constants are available for this function:
For functionId:
TBrickIMUV2.
SetResponseExpected
(const functionId: byte; const responseExpected: boolean)¶Parameters: |
|
---|
Changes the response expected flag of the function specified by the function ID parameter. This flag can only be changed for setter (default value: false) and callback configuration functions (default value: true). For getter functions it is always enabled.
Enabling the response expected flag for a setter function allows to detect timeouts and other error conditions calls of this setter as well. The device will then send a response for this purpose. If this flag is disabled for a setter function then no response is sent and errors are silently ignored, because they cannot be detected.
The following constants are available for this function:
For functionId:
TBrickIMUV2.
SetResponseExpectedAll
(const responseExpected: boolean)¶Parameters: |
|
---|
Changes the response expected flag for all setter and callback configuration functions of this device at once.
Internal functions are used for maintenance tasks such as flashing a new firmware of changing the UID of a Bricklet. These task should be performed using Brick Viewer instead of using the internal functions directly.
TBrickIMUV2.
GetProtocol1BrickletName
(const port: char; out protocolVersion: byte; out firmwareVersion: array [0..2] of byte; out name: string)¶Parameters: |
|
---|---|
Output Parameters: |
|
Returns the firmware and protocol version and the name of the Bricklet for a given port.
This functions sole purpose is to allow automatic flashing of v1.x.y Bricklet plugins.
TBrickIMUV2.
WriteBrickletPlugin
(const port: char; const offset: byte; const chunk: array [0..31] of byte)¶Parameters: |
|
---|
Writes 32 bytes of firmware to the bricklet attached at the given port. The bytes are written to the position offset * 32.
This function is used by Brick Viewer during flashing. It should not be necessary to call it in a normal user program.
TBrickIMUV2.
ReadBrickletPlugin
(const port: char; const offset: byte): array [0..31] of byte¶Parameters: |
|
---|---|
Returns: |
|
Reads 32 bytes of firmware from the bricklet attached at the given port. The bytes are read starting at the position offset * 32.
This function is used by Brick Viewer during flashing. It should not be necessary to call it in a normal user program.
BRICK_IMU_V2_DEVICE_IDENTIFIER
¶This constant is used to identify a IMU Brick 2.0.
The GetIdentity
function and the
TIPConnection.OnEnumerate
callback of the IP Connection have a deviceIdentifier
parameter to specify
the Brick's or Bricklet's type.
BRICK_IMU_V2_DEVICE_DISPLAY_NAME
¶This constant represents the human readable name of a IMU Brick 2.0.