MATLAB/Octave - IMU Brick 2.0

This is the description of the MATLAB/Octave API bindings for the IMU Brick 2.0. General information and technical specifications for the IMU Brick 2.0 are summarized in its hardware description.

An installation guide for the MATLAB/Octave API bindings is part of their general description.

Examples

The example code below is Public Domain (CC0 1.0).

Simple (MATLAB)

Download (matlab_example_simple.m)

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
function matlab_example_simple()
    import com.tinkerforge.IPConnection;
    import com.tinkerforge.BrickIMUV2;

    HOST = 'localhost';
    PORT = 4223;
    UID = 'XXYYZZ'; % Change XXYYZZ to the UID of your IMU Brick 2.0

    ipcon = IPConnection(); % Create IP connection
    imu = handle(BrickIMUV2(UID, ipcon), 'CallbackProperties'); % Create device object

    ipcon.connect(HOST, PORT); % Connect to brickd
    % Don't use device before ipcon is connected

    % Get current quaternion
    quaternion = imu.getQuaternion();

    fprintf('Quaternion [W]: %g\n', quaternion.w/16383.0);
    fprintf('Quaternion [X]: %g\n', quaternion.x/16383.0);
    fprintf('Quaternion [Y]: %g\n', quaternion.y/16383.0);
    fprintf('Quaternion [Z]: %g\n', quaternion.z/16383.0);

    input('Press key to exit\n', 's');
    ipcon.disconnect();
end

Callback (MATLAB)

Download (matlab_example_callback.m)

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
function matlab_example_callback()
    import com.tinkerforge.IPConnection;
    import com.tinkerforge.BrickIMUV2;

    HOST = 'localhost';
    PORT = 4223;
    UID = 'XXYYZZ'; % Change XXYYZZ to the UID of your IMU Brick 2.0

    ipcon = IPConnection(); % Create IP connection
    imu = handle(BrickIMUV2(UID, ipcon), 'CallbackProperties'); % Create device object

    ipcon.connect(HOST, PORT); % Connect to brickd
    % Don't use device before ipcon is connected

    % Register quaternion callback to function cb_quaternion
    set(imu, 'QuaternionCallback', @(h, e) cb_quaternion(e));

    % Set period for quaternion callback to 0.1s (100ms)
    imu.setQuaternionPeriod(100);

    input('Press key to exit\n', 's');
    ipcon.disconnect();
end

% Callback function for quaternion callback
function cb_quaternion(e)
    fprintf('Quaternion [W]: %g\n', e.w/16383.0);
    fprintf('Quaternion [X]: %g\n', e.x/16383.0);
    fprintf('Quaternion [Y]: %g\n', e.y/16383.0);
    fprintf('Quaternion [Z]: %g\n', e.z/16383.0);
    fprintf('\n');
end

All Data (MATLAB)

Download (matlab_example_all_data.m)

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
function matlab_example_all_data()
    import com.tinkerforge.IPConnection;
    import com.tinkerforge.BrickIMUV2;

    HOST = 'localhost';
    PORT = 4223;
    UID = 'XXYYZZ'; % Change XXYYZZ to the UID of your IMU Brick 2.0

    ipcon = IPConnection(); % Create IP connection
    imu = handle(BrickIMUV2(UID, ipcon), 'CallbackProperties'); % Create device object

    ipcon.connect(HOST, PORT); % Connect to brickd
    % Don't use device before ipcon is connected

    % Register all data callback to function cb_all_data
    set(imu, 'AllDataCallback', @(h, e) cb_all_data(e));

    % Set period for all data callback to 0.1s (100ms)
    imu.setAllDataPeriod(100);

    input('Press key to exit\n', 's');
    ipcon.disconnect();
end

% Callback function for all data callback
function cb_all_data(e)
    fprintf('Acceleration [X]: %g m/s²\n', e.acceleration(1)/100.0);
    fprintf('Acceleration [Y]: %g m/s²\n', e.acceleration(2)/100.0);
    fprintf('Acceleration [Z]: %g m/s²\n', e.acceleration(3)/100.0);
    fprintf('Magnetic Field [X]: %g µT\n', e.magneticField(1)/16.0);
    fprintf('Magnetic Field [Y]: %g µT\n', e.magneticField(2)/16.0);
    fprintf('Magnetic Field [Z]: %g µT\n', e.magneticField(3)/16.0);
    fprintf('Angular Velocity [X]: %g °/s\n', e.angularVelocity(1)/16.0);
    fprintf('Angular Velocity [Y]: %g °/s\n', e.angularVelocity(2)/16.0);
    fprintf('Angular Velocity [Z]: %g °/s\n', e.angularVelocity(3)/16.0);
    fprintf('Euler Angle [Heading]: %g °\n', e.eulerAngle(1)/16.0);
    fprintf('Euler Angle [Roll]: %g °\n', e.eulerAngle(2)/16.0);
    fprintf('Euler Angle [Pitch]: %g °\n', e.eulerAngle(3)/16.0);
    fprintf('Quaternion [W]: %g\n', e.quaternion(1)/16383.0);
    fprintf('Quaternion [X]: %g\n', e.quaternion(2)/16383.0);
    fprintf('Quaternion [Y]: %g\n', e.quaternion(3)/16383.0);
    fprintf('Quaternion [Z]: %g\n', e.quaternion(4)/16383.0);
    fprintf('Linear Acceleration [X]: %g m/s²\n', e.linearAcceleration(1)/100.0);
    fprintf('Linear Acceleration [Y]: %g m/s²\n', e.linearAcceleration(2)/100.0);
    fprintf('Linear Acceleration [Z]: %g m/s²\n', e.linearAcceleration(3)/100.0);
    fprintf('Gravity Vector [X]: %g m/s²\n', e.gravityVector(1)/100.0);
    fprintf('Gravity Vector [Y]: %g m/s²\n', e.gravityVector(2)/100.0);
    fprintf('Gravity Vector [Z]: %g m/s²\n', e.gravityVector(3)/100.0);
    fprintf('Temperature: %i °C\n', e.temperature);
    fprintf('Calibration Status: %s\n', dec2bin(e.calibrationStatus));
    fprintf('\n');
end

Simple (Octave)

Download (octave_example_simple.m)

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
function octave_example_simple()
    more off;

    HOST = "localhost";
    PORT = 4223;
    UID = "XXYYZZ"; % Change XXYYZZ to the UID of your IMU Brick 2.0

    ipcon = javaObject("com.tinkerforge.IPConnection"); % Create IP connection
    imu = javaObject("com.tinkerforge.BrickIMUV2", UID, ipcon); % Create device object

    ipcon.connect(HOST, PORT); % Connect to brickd
    % Don't use device before ipcon is connected

    % Get current quaternion
    quaternion = imu.getQuaternion();

    fprintf("Quaternion [W]: %g\n", java2int(quaternion.w)/16383.0);
    fprintf("Quaternion [X]: %g\n", java2int(quaternion.x)/16383.0);
    fprintf("Quaternion [Y]: %g\n", java2int(quaternion.y)/16383.0);
    fprintf("Quaternion [Z]: %g\n", java2int(quaternion.z)/16383.0);

    input("Press key to exit\n", "s");
    ipcon.disconnect();
end

function int = java2int(value)
    if compare_versions(version(), "3.8", "<=")
        int = value.intValue();
    else
        int = value;
    end
end

Callback (Octave)

Download (octave_example_callback.m)

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
function octave_example_callback()
    more off;

    HOST = "localhost";
    PORT = 4223;
    UID = "XXYYZZ"; % Change XXYYZZ to the UID of your IMU Brick 2.0

    ipcon = javaObject("com.tinkerforge.IPConnection"); % Create IP connection
    imu = javaObject("com.tinkerforge.BrickIMUV2", UID, ipcon); % Create device object

    ipcon.connect(HOST, PORT); % Connect to brickd
    % Don't use device before ipcon is connected

    % Register quaternion callback to function cb_quaternion
    imu.addQuaternionCallback(@cb_quaternion);

    % Set period for quaternion callback to 0.1s (100ms)
    imu.setQuaternionPeriod(100);

    input("Press key to exit\n", "s");
    ipcon.disconnect();
end

% Callback function for quaternion callback
function cb_quaternion(e)
    fprintf("Quaternion [W]: %g\n", java2int(e.w)/16383.0);
    fprintf("Quaternion [X]: %g\n", java2int(e.x)/16383.0);
    fprintf("Quaternion [Y]: %g\n", java2int(e.y)/16383.0);
    fprintf("Quaternion [Z]: %g\n", java2int(e.z)/16383.0);
    fprintf("\n");
end

function int = java2int(value)
    if compare_versions(version(), "3.8", "<=")
        int = value.intValue();
    else
        int = value;
    end
end

All Data (Octave)

Download (octave_example_all_data.m)

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
function octave_example_all_data()
    more off;

    HOST = "localhost";
    PORT = 4223;
    UID = "XXYYZZ"; % Change XXYYZZ to the UID of your IMU Brick 2.0

    ipcon = javaObject("com.tinkerforge.IPConnection"); % Create IP connection
    imu = javaObject("com.tinkerforge.BrickIMUV2", UID, ipcon); % Create device object

    ipcon.connect(HOST, PORT); % Connect to brickd
    % Don't use device before ipcon is connected

    % Register all data callback to function cb_all_data
    imu.addAllDataCallback(@cb_all_data);

    % Set period for all data callback to 0.1s (100ms)
    imu.setAllDataPeriod(100);

    input("Press key to exit\n", "s");
    ipcon.disconnect();
end

% Callback function for all data callback
function cb_all_data(e)
    fprintf("Acceleration [X]: %g m/s²\n", java2int(e.acceleration(1))/100.0);
    fprintf("Acceleration [Y]: %g m/s²\n", java2int(e.acceleration(2))/100.0);
    fprintf("Acceleration [Z]: %g m/s²\n", java2int(e.acceleration(3))/100.0);
    fprintf("Magnetic Field [X]: %g µT\n", java2int(e.magneticField(1))/16.0);
    fprintf("Magnetic Field [Y]: %g µT\n", java2int(e.magneticField(2))/16.0);
    fprintf("Magnetic Field [Z]: %g µT\n", java2int(e.magneticField(3))/16.0);
    fprintf("Angular Velocity [X]: %g °/s\n", java2int(e.angularVelocity(1))/16.0);
    fprintf("Angular Velocity [Y]: %g °/s\n", java2int(e.angularVelocity(2))/16.0);
    fprintf("Angular Velocity [Z]: %g °/s\n", java2int(e.angularVelocity(3))/16.0);
    fprintf("Euler Angle [Heading]: %g °\n", java2int(e.eulerAngle(1))/16.0);
    fprintf("Euler Angle [Roll]: %g °\n", java2int(e.eulerAngle(2))/16.0);
    fprintf("Euler Angle [Pitch]: %g °\n", java2int(e.eulerAngle(3))/16.0);
    fprintf("Quaternion [W]: %g\n", java2int(e.quaternion(1))/16383.0);
    fprintf("Quaternion [X]: %g\n", java2int(e.quaternion(2))/16383.0);
    fprintf("Quaternion [Y]: %g\n", java2int(e.quaternion(3))/16383.0);
    fprintf("Quaternion [Z]: %g\n", java2int(e.quaternion(4))/16383.0);
    fprintf("Linear Acceleration [X]: %g m/s²\n", java2int(e.linearAcceleration(1))/100.0);
    fprintf("Linear Acceleration [Y]: %g m/s²\n", java2int(e.linearAcceleration(2))/100.0);
    fprintf("Linear Acceleration [Z]: %g m/s²\n", java2int(e.linearAcceleration(3))/100.0);
    fprintf("Gravity Vector [X]: %g m/s²\n", java2int(e.gravityVector(1))/100.0);
    fprintf("Gravity Vector [Y]: %g m/s²\n", java2int(e.gravityVector(2))/100.0);
    fprintf("Gravity Vector [Z]: %g m/s²\n", java2int(e.gravityVector(3))/100.0);
    fprintf("Temperature: %d °C\n", java2int(e.temperature));
    fprintf("Calibration Status: %s\n", dec2bin(java2int(e.calibrationStatus)));
    fprintf("\n");
end

function int = java2int(value)
    if compare_versions(version(), "3.8", "<=")
        int = value.intValue();
    else
        int = value;
    end
end

API

Generally, every method of the MATLAB bindings that returns a value can throw a TimeoutException. This exception gets thrown if the device did not respond. If a cable based connection is used, it is unlikely that this exception gets thrown (assuming nobody unplugs the device). However, if a wireless connection is used, timeouts will occur if the distance to the device gets too big.

Beside the TimeoutException there is also a NotConnectedException that is thrown if a method needs to communicate with the device while the IP Connection is not connected.

Since the MATLAB bindings are based on Java and Java does not support multiple return values and return by reference is not possible for primitive types, we use small classes that only consist of member variables. The member variables of the returned objects are described in the corresponding method descriptions.

The package for all Brick/Bricklet bindings and the IP Connection is com.tinkerforge.*

All methods listed below are thread-safe.

Basic Functions

class BrickIMUV2(String uid, IPConnection ipcon)
Parameters:
  • uid – Type: String
  • ipcon – Type: IPConnection
Returns:
  • imuV2 – Type: BrickIMUV2

Creates an object with the unique device ID uid.

In MATLAB:

import com.tinkerforge.BrickIMUV2;

imuV2 = BrickIMUV2('YOUR_DEVICE_UID', ipcon);

In Octave:

imuV2 = java_new("com.tinkerforge.BrickIMUV2", "YOUR_DEVICE_UID", ipcon);

This object can then be used after the IP Connection is connected.

BrickIMUV2.Orientation BrickIMUV2.getOrientation()
Return Object:
  • heading – Type: short, Unit: 1/16 °, Range: [0 to 5760]
  • roll – Type: short, Unit: 1/16 °, Range: [-1440 to 1440]
  • pitch – Type: short, Unit: 1/16 °, Range: [-2880 to 2880]

Returns the current orientation (heading, roll, pitch) of the IMU Brick as independent Euler angles. Note that Euler angles always experience a gimbal lock. We recommend that you use quaternions instead, if you need the absolute orientation.

If you want to get the orientation periodically, it is recommended to use the OrientationCallback callback and set the period with setOrientationPeriod().

BrickIMUV2.LinearAcceleration BrickIMUV2.getLinearAcceleration()
Return Object:
  • x – Type: short, Unit: 1 cm/s², Range: ?
  • y – Type: short, Unit: 1 cm/s², Range: ?
  • z – Type: short, Unit: 1 cm/s², Range: ?

Returns the linear acceleration of the IMU Brick for the x, y and z axis. The acceleration is in the range configured with setSensorConfiguration().

The linear acceleration is the acceleration in each of the three axis of the IMU Brick with the influences of gravity removed.

It is also possible to get the gravity vector with the influence of linear acceleration removed, see getGravityVector().

If you want to get the linear acceleration periodically, it is recommended to use the LinearAccelerationCallback callback and set the period with setLinearAccelerationPeriod().

BrickIMUV2.GravityVector BrickIMUV2.getGravityVector()
Return Object:
  • x – Type: short, Unit: 1 cm/s², Range: [-981 to 981]
  • y – Type: short, Unit: 1 cm/s², Range: [-981 to 981]
  • z – Type: short, Unit: 1 cm/s², Range: [-981 to 981]

Returns the current gravity vector of the IMU Brick for the x, y and z axis.

The gravity vector is the acceleration that occurs due to gravity. Influences of additional linear acceleration are removed.

It is also possible to get the linear acceleration with the influence of gravity removed, see getLinearAcceleration().

If you want to get the gravity vector periodically, it is recommended to use the GravityVectorCallback callback and set the period with setGravityVectorPeriod().

BrickIMUV2.Quaternion BrickIMUV2.getQuaternion()
Return Object:
  • w – Type: short, Unit: 1/16383, Range: [-214 + 1 to 214 - 1]
  • x – Type: short, Unit: 1/16383, Range: [-214 + 1 to 214 - 1]
  • y – Type: short, Unit: 1/16383, Range: [-214 + 1 to 214 - 1]
  • z – Type: short, Unit: 1/16383, Range: [-214 + 1 to 214 - 1]

Returns the current orientation (w, x, y, z) of the IMU Brick as quaternions.

You have to divide the return values by 16383 (14 bit) to get the usual range of -1.0 to +1.0 for quaternions.

If you want to get the quaternions periodically, it is recommended to use the QuaternionCallback callback and set the period with setQuaternionPeriod().

BrickIMUV2.AllData BrickIMUV2.getAllData()
Return Object:
  • acceleration – Type: short[], Length: 3
    • 1: x – Type: short, Unit: 1 cm/s², Range: ?
    • 2: y – Type: short, Unit: 1 cm/s², Range: ?
    • 3: z – Type: short, Unit: 1 cm/s², Range: ?
  • magneticField – Type: short[], Length: 3
    • 1: x – Type: short, Unit: 1/16 µT, Range: [-20800 to 20800]
    • 2: y – Type: short, Unit: 1/16 µT, Range: [-20800 to 20800]
    • 3: z – Type: short, Unit: 1/16 µT, Range: [-40000 to 40000]
  • angularVelocity – Type: short[], Length: 3
    • 1: x – Type: short, Unit: 1/16 °/s, Range: ?
    • 2: y – Type: short, Unit: 1/16 °/s, Range: ?
    • 3: z – Type: short, Unit: 1/16 °/s, Range: ?
  • eulerAngle – Type: short[], Length: 3
    • 1: heading – Type: short, Unit: 1/16 °, Range: [0 to 5760]
    • 2: roll – Type: short, Unit: 1/16 °, Range: [-1440 to 1440]
    • 3: pitch – Type: short, Unit: 1/16 °, Range: [-2880 to 2880]
  • quaternion – Type: short[], Length: 4
    • 1: w – Type: short, Unit: 1/16383, Range: [-214 + 1 to 214 - 1]
    • 2: x – Type: short, Unit: 1/16383, Range: [-214 + 1 to 214 - 1]
    • 3: y – Type: short, Unit: 1/16383, Range: [-214 + 1 to 214 - 1]
    • 4: z – Type: short, Unit: 1/16383, Range: [-214 + 1 to 214 - 1]
  • linearAcceleration – Type: short[], Length: 3
    • 1: x – Type: short, Unit: 1 cm/s², Range: ?
    • 2: y – Type: short, Unit: 1 cm/s², Range: ?
    • 3: z – Type: short, Unit: 1 cm/s², Range: ?
  • gravityVector – Type: short[], Length: 3
    • 1: x – Type: short, Unit: 1 cm/s², Range: [-981 to 981]
    • 2: y – Type: short, Unit: 1 cm/s², Range: [-981 to 981]
    • 3: z – Type: short, Unit: 1 cm/s², Range: [-981 to 981]
  • temperature – Type: byte, Unit: 1 °C, Range: [-128 to 127]
  • calibrationStatus – Type: short, Range: [0 to 255]

Return all of the available data of the IMU Brick.

The calibration status consists of four pairs of two bits. Each pair of bits represents the status of the current calibration.

  • bit 0-1: Magnetometer
  • bit 2-3: Accelerometer
  • bit 4-5: Gyroscope
  • bit 6-7: System

A value of 0 means for "not calibrated" and a value of 3 means "fully calibrated". In your program you should always be able to ignore the calibration status, it is used by the calibration window of the Brick Viewer and it can be ignored after the first calibration. See the documentation in the calibration window for more information regarding the calibration of the IMU Brick.

If you want to get the data periodically, it is recommended to use the AllDataCallback callback and set the period with setAllDataPeriod().

void BrickIMUV2.ledsOn()

Turns the orientation and direction LEDs of the IMU Brick on.

void BrickIMUV2.ledsOff()

Turns the orientation and direction LEDs of the IMU Brick off.

boolean BrickIMUV2.areLedsOn()
Returns:
  • leds – Type: boolean, Default: true

Returns true if the orientation and direction LEDs of the IMU Brick are on, false otherwise.

Advanced Functions

BrickIMUV2.Acceleration BrickIMUV2.getAcceleration()
Return Object:
  • x – Type: short, Unit: 1 cm/s², Range: ?
  • y – Type: short, Unit: 1 cm/s², Range: ?
  • z – Type: short, Unit: 1 cm/s², Range: ?

Returns the calibrated acceleration from the accelerometer for the x, y and z axis. The acceleration is in the range configured with setSensorConfiguration().

If you want to get the acceleration periodically, it is recommended to use the AccelerationCallback callback and set the period with setAccelerationPeriod().

BrickIMUV2.MagneticField BrickIMUV2.getMagneticField()
Return Object:
  • x – Type: short, Unit: 1/16 µT, Range: [-20800 to 20800]
  • y – Type: short, Unit: 1/16 µT, Range: [-20800 to 20800]
  • z – Type: short, Unit: 1/16 µT, Range: [-40000 to 40000]

Returns the calibrated magnetic field from the magnetometer for the x, y and z axis.

If you want to get the magnetic field periodically, it is recommended to use the MagneticFieldCallback callback and set the period with setMagneticFieldPeriod().

BrickIMUV2.AngularVelocity BrickIMUV2.getAngularVelocity()
Return Object:
  • x – Type: short, Unit: 1/16 °/s, Range: ?
  • y – Type: short, Unit: 1/16 °/s, Range: ?
  • z – Type: short, Unit: 1/16 °/s, Range: ?

Returns the calibrated angular velocity from the gyroscope for the x, y and z axis. The angular velocity is in the range configured with setSensorConfiguration().

If you want to get the angular velocity periodically, it is recommended to use the AngularVelocityCallback acallback nd set the period with setAngularVelocityPeriod().

byte BrickIMUV2.getTemperature()
Returns:
  • temperature – Type: byte, Unit: 1 °C, Range: [-128 to 127]

Returns the temperature of the IMU Brick. The temperature is measured in the core of the BNO055 IC, it is not the ambient temperature

boolean BrickIMUV2.saveCalibration()
Returns:
  • calibrationDone – Type: boolean

A call of this function saves the current calibration to be used as a starting point for the next restart of continuous calibration of the IMU Brick.

A return value of true means that the calibration could be used and false means that it could not be used (this happens if the calibration status is not "fully calibrated").

This function is used by the calibration window of the Brick Viewer, you should not need to call it in your program.

void BrickIMUV2.setSensorConfiguration(short magnetometerRate, short gyroscopeRange, short gyroscopeBandwidth, short accelerometerRange, short accelerometerBandwidth)
Parameters:
  • magnetometerRate – Type: short, Range: See constants, Default: 5
  • gyroscopeRange – Type: short, Range: See constants, Default: 0
  • gyroscopeBandwidth – Type: short, Range: See constants, Default: 7
  • accelerometerRange – Type: short, Range: See constants, Default: 1
  • accelerometerBandwidth – Type: short, Range: See constants, Default: 3

Sets the available sensor configuration for the Magnetometer, Gyroscope and Accelerometer. The Accelerometer Range is user selectable in all fusion modes, all other configurations are auto-controlled in fusion mode.

The following constants are available for this function:

For magnetometerRate:

  • BrickIMUV2.MAGNETOMETER_RATE_2HZ = 0
  • BrickIMUV2.MAGNETOMETER_RATE_6HZ = 1
  • BrickIMUV2.MAGNETOMETER_RATE_8HZ = 2
  • BrickIMUV2.MAGNETOMETER_RATE_10HZ = 3
  • BrickIMUV2.MAGNETOMETER_RATE_15HZ = 4
  • BrickIMUV2.MAGNETOMETER_RATE_20HZ = 5
  • BrickIMUV2.MAGNETOMETER_RATE_25HZ = 6
  • BrickIMUV2.MAGNETOMETER_RATE_30HZ = 7

For gyroscopeRange:

  • BrickIMUV2.GYROSCOPE_RANGE_2000DPS = 0
  • BrickIMUV2.GYROSCOPE_RANGE_1000DPS = 1
  • BrickIMUV2.GYROSCOPE_RANGE_500DPS = 2
  • BrickIMUV2.GYROSCOPE_RANGE_250DPS = 3
  • BrickIMUV2.GYROSCOPE_RANGE_125DPS = 4

For gyroscopeBandwidth:

  • BrickIMUV2.GYROSCOPE_BANDWIDTH_523HZ = 0
  • BrickIMUV2.GYROSCOPE_BANDWIDTH_230HZ = 1
  • BrickIMUV2.GYROSCOPE_BANDWIDTH_116HZ = 2
  • BrickIMUV2.GYROSCOPE_BANDWIDTH_47HZ = 3
  • BrickIMUV2.GYROSCOPE_BANDWIDTH_23HZ = 4
  • BrickIMUV2.GYROSCOPE_BANDWIDTH_12HZ = 5
  • BrickIMUV2.GYROSCOPE_BANDWIDTH_64HZ = 6
  • BrickIMUV2.GYROSCOPE_BANDWIDTH_32HZ = 7

For accelerometerRange:

  • BrickIMUV2.ACCELEROMETER_RANGE_2G = 0
  • BrickIMUV2.ACCELEROMETER_RANGE_4G = 1
  • BrickIMUV2.ACCELEROMETER_RANGE_8G = 2
  • BrickIMUV2.ACCELEROMETER_RANGE_16G = 3

For accelerometerBandwidth:

  • BrickIMUV2.ACCELEROMETER_BANDWIDTH_7_81HZ = 0
  • BrickIMUV2.ACCELEROMETER_BANDWIDTH_15_63HZ = 1
  • BrickIMUV2.ACCELEROMETER_BANDWIDTH_31_25HZ = 2
  • BrickIMUV2.ACCELEROMETER_BANDWIDTH_62_5HZ = 3
  • BrickIMUV2.ACCELEROMETER_BANDWIDTH_125HZ = 4
  • BrickIMUV2.ACCELEROMETER_BANDWIDTH_250HZ = 5
  • BrickIMUV2.ACCELEROMETER_BANDWIDTH_500HZ = 6
  • BrickIMUV2.ACCELEROMETER_BANDWIDTH_1000HZ = 7

New in version 2.0.5 (Firmware).

BrickIMUV2.SensorConfiguration BrickIMUV2.getSensorConfiguration()
Return Object:
  • magnetometerRate – Type: short, Range: See constants, Default: 5
  • gyroscopeRange – Type: short, Range: See constants, Default: 0
  • gyroscopeBandwidth – Type: short, Range: See constants, Default: 7
  • accelerometerRange – Type: short, Range: See constants, Default: 1
  • accelerometerBandwidth – Type: short, Range: See constants, Default: 3

Returns the sensor configuration as set by setSensorConfiguration().

The following constants are available for this function:

For magnetometerRate:

  • BrickIMUV2.MAGNETOMETER_RATE_2HZ = 0
  • BrickIMUV2.MAGNETOMETER_RATE_6HZ = 1
  • BrickIMUV2.MAGNETOMETER_RATE_8HZ = 2
  • BrickIMUV2.MAGNETOMETER_RATE_10HZ = 3
  • BrickIMUV2.MAGNETOMETER_RATE_15HZ = 4
  • BrickIMUV2.MAGNETOMETER_RATE_20HZ = 5
  • BrickIMUV2.MAGNETOMETER_RATE_25HZ = 6
  • BrickIMUV2.MAGNETOMETER_RATE_30HZ = 7

For gyroscopeRange:

  • BrickIMUV2.GYROSCOPE_RANGE_2000DPS = 0
  • BrickIMUV2.GYROSCOPE_RANGE_1000DPS = 1
  • BrickIMUV2.GYROSCOPE_RANGE_500DPS = 2
  • BrickIMUV2.GYROSCOPE_RANGE_250DPS = 3
  • BrickIMUV2.GYROSCOPE_RANGE_125DPS = 4

For gyroscopeBandwidth:

  • BrickIMUV2.GYROSCOPE_BANDWIDTH_523HZ = 0
  • BrickIMUV2.GYROSCOPE_BANDWIDTH_230HZ = 1
  • BrickIMUV2.GYROSCOPE_BANDWIDTH_116HZ = 2
  • BrickIMUV2.GYROSCOPE_BANDWIDTH_47HZ = 3
  • BrickIMUV2.GYROSCOPE_BANDWIDTH_23HZ = 4
  • BrickIMUV2.GYROSCOPE_BANDWIDTH_12HZ = 5
  • BrickIMUV2.GYROSCOPE_BANDWIDTH_64HZ = 6
  • BrickIMUV2.GYROSCOPE_BANDWIDTH_32HZ = 7

For accelerometerRange:

  • BrickIMUV2.ACCELEROMETER_RANGE_2G = 0
  • BrickIMUV2.ACCELEROMETER_RANGE_4G = 1
  • BrickIMUV2.ACCELEROMETER_RANGE_8G = 2
  • BrickIMUV2.ACCELEROMETER_RANGE_16G = 3

For accelerometerBandwidth:

  • BrickIMUV2.ACCELEROMETER_BANDWIDTH_7_81HZ = 0
  • BrickIMUV2.ACCELEROMETER_BANDWIDTH_15_63HZ = 1
  • BrickIMUV2.ACCELEROMETER_BANDWIDTH_31_25HZ = 2
  • BrickIMUV2.ACCELEROMETER_BANDWIDTH_62_5HZ = 3
  • BrickIMUV2.ACCELEROMETER_BANDWIDTH_125HZ = 4
  • BrickIMUV2.ACCELEROMETER_BANDWIDTH_250HZ = 5
  • BrickIMUV2.ACCELEROMETER_BANDWIDTH_500HZ = 6
  • BrickIMUV2.ACCELEROMETER_BANDWIDTH_1000HZ = 7

New in version 2.0.5 (Firmware).

void BrickIMUV2.setSensorFusionMode(short mode)
Parameters:
  • mode – Type: short, Range: See constants, Default: 1

If the fusion mode is turned off, the functions getAcceleration(), getMagneticField() and getAngularVelocity() return uncalibrated and uncompensated sensor data. All other sensor data getters return no data.

Since firmware version 2.0.6 you can also use a fusion mode without magnetometer. In this mode the calculated orientation is relative (with magnetometer it is absolute with respect to the earth). However, the calculation can't be influenced by spurious magnetic fields.

Since firmware version 2.0.13 you can also use a fusion mode without fast magnetometer calibration. This mode is the same as the normal fusion mode, but the fast magnetometer calibration is turned off. So to find the orientation the first time will likely take longer, but small magnetic influences might not affect the automatic calibration as much.

The following constants are available for this function:

For mode:

  • BrickIMUV2.SENSOR_FUSION_OFF = 0
  • BrickIMUV2.SENSOR_FUSION_ON = 1
  • BrickIMUV2.SENSOR_FUSION_ON_WITHOUT_MAGNETOMETER = 2
  • BrickIMUV2.SENSOR_FUSION_ON_WITHOUT_FAST_MAGNETOMETER_CALIBRATION = 3

New in version 2.0.5 (Firmware).

short BrickIMUV2.getSensorFusionMode()
Returns:
  • mode – Type: short, Range: See constants, Default: 1

Returns the sensor fusion mode as set by setSensorFusionMode().

The following constants are available for this function:

For mode:

  • BrickIMUV2.SENSOR_FUSION_OFF = 0
  • BrickIMUV2.SENSOR_FUSION_ON = 1
  • BrickIMUV2.SENSOR_FUSION_ON_WITHOUT_MAGNETOMETER = 2
  • BrickIMUV2.SENSOR_FUSION_ON_WITHOUT_FAST_MAGNETOMETER_CALIBRATION = 3

New in version 2.0.5 (Firmware).

void BrickIMUV2.setSPITFPBaudrateConfig(boolean enableDynamicBaudrate, long minimumDynamicBaudrate)
Parameters:
  • enableDynamicBaudrate – Type: boolean, Default: true
  • minimumDynamicBaudrate – Type: long, Unit: 1 Bd, Range: [400000 to 2000000], Default: 400000

The SPITF protocol can be used with a dynamic baudrate. If the dynamic baudrate is enabled, the Brick will try to adapt the baudrate for the communication between Bricks and Bricklets according to the amount of data that is transferred.

The baudrate will be increased exponentially if lots of data is sent/received and decreased linearly if little data is sent/received.

This lowers the baudrate in applications where little data is transferred (e.g. a weather station) and increases the robustness. If there is lots of data to transfer (e.g. Thermal Imaging Bricklet) it automatically increases the baudrate as needed.

In cases where some data has to transferred as fast as possible every few seconds (e.g. RS485 Bricklet with a high baudrate but small payload) you may want to turn the dynamic baudrate off to get the highest possible performance.

The maximum value of the baudrate can be set per port with the function setSPITFPBaudrate(). If the dynamic baudrate is disabled, the baudrate as set by setSPITFPBaudrate() will be used statically.

New in version 2.0.10 (Firmware).

BrickIMUV2.SPITFPBaudrateConfig BrickIMUV2.getSPITFPBaudrateConfig()
Return Object:
  • enableDynamicBaudrate – Type: boolean, Default: true
  • minimumDynamicBaudrate – Type: long, Unit: 1 Bd, Range: [400000 to 2000000], Default: 400000

Returns the baudrate config, see setSPITFPBaudrateConfig().

New in version 2.0.10 (Firmware).

long BrickIMUV2.getSendTimeoutCount(short communicationMethod)
Parameters:
  • communicationMethod – Type: short, Range: See constants
Returns:
  • timeoutCount – Type: long, Range: [0 to 232 - 1]

Returns the timeout count for the different communication methods.

The methods 0-2 are available for all Bricks, 3-7 only for Master Bricks.

This function is mostly used for debugging during development, in normal operation the counters should nearly always stay at 0.

The following constants are available for this function:

For communicationMethod:

  • BrickIMUV2.COMMUNICATION_METHOD_NONE = 0
  • BrickIMUV2.COMMUNICATION_METHOD_USB = 1
  • BrickIMUV2.COMMUNICATION_METHOD_SPI_STACK = 2
  • BrickIMUV2.COMMUNICATION_METHOD_CHIBI = 3
  • BrickIMUV2.COMMUNICATION_METHOD_RS485 = 4
  • BrickIMUV2.COMMUNICATION_METHOD_WIFI = 5
  • BrickIMUV2.COMMUNICATION_METHOD_ETHERNET = 6
  • BrickIMUV2.COMMUNICATION_METHOD_WIFI_V2 = 7

New in version 2.0.7 (Firmware).

void BrickIMUV2.setSPITFPBaudrate(char brickletPort, long baudrate)
Parameters:
  • brickletPort – Type: char, Range: ['a' to 'b']
  • baudrate – Type: long, Unit: 1 Bd, Range: [400000 to 2000000], Default: 1400000

Sets the baudrate for a specific Bricklet port.

If you want to increase the throughput of Bricklets you can increase the baudrate. If you get a high error count because of high interference (see getSPITFPErrorCount()) you can decrease the baudrate.

If the dynamic baudrate feature is enabled, the baudrate set by this function corresponds to the maximum baudrate (see setSPITFPBaudrateConfig()).

Regulatory testing is done with the default baudrate. If CE compatibility or similar is necessary in your applications we recommend to not change the baudrate.

New in version 2.0.5 (Firmware).

long BrickIMUV2.getSPITFPBaudrate(char brickletPort)
Parameters:
  • brickletPort – Type: char, Range: ['a' to 'b']
Returns:
  • baudrate – Type: long, Unit: 1 Bd, Range: [400000 to 2000000], Default: 1400000

Returns the baudrate for a given Bricklet port, see setSPITFPBaudrate().

New in version 2.0.5 (Firmware).

BrickIMUV2.SPITFPErrorCount BrickIMUV2.getSPITFPErrorCount(char brickletPort)
Parameters:
  • brickletPort – Type: char, Range: ['a' to 'b']
Return Object:
  • errorCountACKChecksum – Type: long, Range: [0 to 232 - 1]
  • errorCountMessageChecksum – Type: long, Range: [0 to 232 - 1]
  • errorCountFrame – Type: long, Range: [0 to 232 - 1]
  • errorCountOverflow – Type: long, Range: [0 to 232 - 1]

Returns the error count for the communication between Brick and Bricklet.

The errors are divided into

  • ACK checksum errors,
  • message checksum errors,
  • framing errors and
  • overflow errors.

The errors counts are for errors that occur on the Brick side. All Bricklets have a similar function that returns the errors on the Bricklet side.

New in version 2.0.5 (Firmware).

void BrickIMUV2.enableStatusLED()

Enables the status LED.

The status LED is the blue LED next to the USB connector. If enabled is is on and it flickers if data is transfered. If disabled it is always off.

The default state is enabled.

void BrickIMUV2.disableStatusLED()

Disables the status LED.

The status LED is the blue LED next to the USB connector. If enabled is is on and it flickers if data is transfered. If disabled it is always off.

The default state is enabled.

boolean BrickIMUV2.isStatusLEDEnabled()
Returns:
  • enabled – Type: boolean, Default: true

Returns true if the status LED is enabled, false otherwise.

short BrickIMUV2.getChipTemperature()
Returns:
  • temperature – Type: short, Unit: 1/10 °C, Range: [-215 to 215 - 1]

Returns the temperature as measured inside the microcontroller. The value returned is not the ambient temperature!

The temperature is only proportional to the real temperature and it has an accuracy of ±15%. Practically it is only useful as an indicator for temperature changes.

void BrickIMUV2.reset()

Calling this function will reset the Brick. Calling this function on a Brick inside of a stack will reset the whole stack.

After a reset you have to create new device objects, calling functions on the existing ones will result in undefined behavior!

BrickIMUV2.Identity BrickIMUV2.getIdentity()
Return Object:
  • uid – Type: String, Length: up to 8
  • connectedUid – Type: String, Length: up to 8
  • position – Type: char, Range: ['0' to '8']
  • hardwareVersion – Type: short[], Length: 3
    • 1: major – Type: short, Range: [0 to 255]
    • 2: minor – Type: short, Range: [0 to 255]
    • 3: revision – Type: short, Range: [0 to 255]
  • firmwareVersion – Type: short[], Length: 3
    • 1: major – Type: short, Range: [0 to 255]
    • 2: minor – Type: short, Range: [0 to 255]
    • 3: revision – Type: short, Range: [0 to 255]
  • deviceIdentifier – Type: int, Range: [0 to 216 - 1]

Returns the UID, the UID where the Brick is connected to, the position, the hardware and firmware version as well as the device identifier.

The position is the position in the stack from '0' (bottom) to '8' (top).

The device identifier numbers can be found here. There is also a constant for the device identifier of this Brick.

Callback Configuration Functions

void BrickIMUV2.setAccelerationPeriod(long period)
Parameters:
  • period – Type: long, Unit: 1 ms, Range: [0 to 232 - 1], Default: 0

Sets the period with which the AccelerationCallback callback is triggered periodically. A value of 0 turns the callback off.

long BrickIMUV2.getAccelerationPeriod()
Returns:
  • period – Type: long, Unit: 1 ms, Range: [0 to 232 - 1], Default: 0

Returns the period as set by setAccelerationPeriod().

void BrickIMUV2.setMagneticFieldPeriod(long period)
Parameters:
  • period – Type: long, Unit: 1 ms, Range: [0 to 232 - 1], Default: 0

Sets the period with which the MagneticFieldCallback callback is triggered periodically. A value of 0 turns the callback off.

long BrickIMUV2.getMagneticFieldPeriod()
Returns:
  • period – Type: long, Unit: 1 ms, Range: [0 to 232 - 1], Default: 0

Returns the period as set by setMagneticFieldPeriod().

void BrickIMUV2.setAngularVelocityPeriod(long period)
Parameters:
  • period – Type: long, Unit: 1 ms, Range: [0 to 232 - 1], Default: 0

Sets the period with which the AngularVelocityCallback callback is triggered periodically. A value of 0 turns the callback off.

long BrickIMUV2.getAngularVelocityPeriod()
Returns:
  • period – Type: long, Unit: 1 ms, Range: [0 to 232 - 1], Default: 0

Returns the period as set by setAngularVelocityPeriod().

void BrickIMUV2.setTemperaturePeriod(long period)
Parameters:
  • period – Type: long, Unit: 1 ms, Range: [0 to 232 - 1], Default: 0

Sets the period with which the TemperatureCallback callback is triggered periodically. A value of 0 turns the callback off.

long BrickIMUV2.getTemperaturePeriod()
Returns:
  • period – Type: long, Unit: 1 ms, Range: [0 to 232 - 1], Default: 0

Returns the period as set by setTemperaturePeriod().

void BrickIMUV2.setOrientationPeriod(long period)
Parameters:
  • period – Type: long, Unit: 1 ms, Range: [0 to 232 - 1], Default: 0

Sets the period with which the OrientationCallback callback is triggered periodically. A value of 0 turns the callback off.

long BrickIMUV2.getOrientationPeriod()
Returns:
  • period – Type: long, Unit: 1 ms, Range: [0 to 232 - 1], Default: 0

Returns the period as set by setOrientationPeriod().

void BrickIMUV2.setLinearAccelerationPeriod(long period)
Parameters:
  • period – Type: long, Unit: 1 ms, Range: [0 to 232 - 1], Default: 0

Sets the period with which the LinearAccelerationCallback callback is triggered periodically. A value of 0 turns the callback off.

long BrickIMUV2.getLinearAccelerationPeriod()
Returns:
  • period – Type: long, Unit: 1 ms, Range: [0 to 232 - 1], Default: 0

Returns the period as set by setLinearAccelerationPeriod().

void BrickIMUV2.setGravityVectorPeriod(long period)
Parameters:
  • period – Type: long, Unit: 1 ms, Range: [0 to 232 - 1], Default: 0

Sets the period with which the GravityVectorCallback callback is triggered periodically. A value of 0 turns the callback off.

long BrickIMUV2.getGravityVectorPeriod()
Returns:
  • period – Type: long, Unit: 1 ms, Range: [0 to 232 - 1], Default: 0

Returns the period as set by setGravityVectorPeriod().

void BrickIMUV2.setQuaternionPeriod(long period)
Parameters:
  • period – Type: long, Unit: 1 ms, Range: [0 to 232 - 1], Default: 0

Sets the period with which the QuaternionCallback callback is triggered periodically. A value of 0 turns the callback off.

long BrickIMUV2.getQuaternionPeriod()
Returns:
  • period – Type: long, Unit: 1 ms, Range: [0 to 232 - 1], Default: 0

Returns the period as set by setQuaternionPeriod().

void BrickIMUV2.setAllDataPeriod(long period)
Parameters:
  • period – Type: long, Unit: 1 ms, Range: [0 to 232 - 1], Default: 0

Sets the period with which the AllDataCallback callback is triggered periodically. A value of 0 turns the callback off.

long BrickIMUV2.getAllDataPeriod()
Returns:
  • period – Type: long, Unit: 1 ms, Range: [0 to 232 - 1], Default: 0

Returns the period as set by setAllDataPeriod().

Callbacks

Callbacks can be registered to receive time critical or recurring data from the device. The registration is done with "set" function of MATLAB. The parameters consist of the IP Connection object, the callback name and the callback function. For example, it looks like this in MATLAB:

function my_callback(e)
    fprintf('Parameter: %s\n', e.param);
end

set(device, 'ExampleCallback', @(h, e) my_callback(e));

Due to a difference in the Octave Java support the "set" function cannot be used in Octave. The registration is done with "add*Callback" functions of the device object. It looks like this in Octave:

function my_callback(e)
    fprintf("Parameter: %s\n", e.param);
end

device.addExampleCallback(@my_callback);

It is possible to add several callbacks and to remove them with the corresponding "remove*Callback" function.

The parameters of the callback are passed to the callback function as fields of the structure e, which is derived from the java.util.EventObject class. The available callback names with corresponding structure fields are described below.

Note

Using callbacks for recurring events is always preferred compared to using getters. It will use less USB bandwidth and the latency will be a lot better, since there is no round trip time.

callback BrickIMUV2.AccelerationCallback
Event Object:
  • x – Type: short, Unit: 1 cm/s², Range: ?
  • y – Type: short, Unit: 1 cm/s², Range: ?
  • z – Type: short, Unit: 1 cm/s², Range: ?

This callback is triggered periodically with the period that is set by setAccelerationPeriod(). The parameters are the acceleration for the x, y and z axis.

In MATLAB the set() function can be used to register a callback function to this callback.

In Octave a callback function can be added to this callback using the addAccelerationCallback() function. An added callback function can be removed with the removeAccelerationCallback() function.

callback BrickIMUV2.MagneticFieldCallback
Event Object:
  • x – Type: short, Unit: 1/16 µT, Range: [-20800 to 20800]
  • y – Type: short, Unit: 1/16 µT, Range: [-20800 to 20800]
  • z – Type: short, Unit: 1/16 µT, Range: [-40000 to 40000]

This callback is triggered periodically with the period that is set by setMagneticFieldPeriod(). The parameters are the magnetic field for the x, y and z axis.

In MATLAB the set() function can be used to register a callback function to this callback.

In Octave a callback function can be added to this callback using the addMagneticFieldCallback() function. An added callback function can be removed with the removeMagneticFieldCallback() function.

callback BrickIMUV2.AngularVelocityCallback
Event Object:
  • x – Type: short, Unit: 1/16 °/s, Range: ?
  • y – Type: short, Unit: 1/16 °/s, Range: ?
  • z – Type: short, Unit: 1/16 °/s, Range: ?

This callback is triggered periodically with the period that is set by setAngularVelocityPeriod(). The parameters are the angular velocity for the x, y and z axis.

In MATLAB the set() function can be used to register a callback function to this callback.

In Octave a callback function can be added to this callback using the addAngularVelocityCallback() function. An added callback function can be removed with the removeAngularVelocityCallback() function.

callback BrickIMUV2.TemperatureCallback
Event Object:
  • temperature – Type: byte, Unit: 1 °C, Range: [-128 to 127]

This callback is triggered periodically with the period that is set by setTemperaturePeriod(). The parameter is the temperature.

In MATLAB the set() function can be used to register a callback function to this callback.

In Octave a callback function can be added to this callback using the addTemperatureCallback() function. An added callback function can be removed with the removeTemperatureCallback() function.

callback BrickIMUV2.LinearAccelerationCallback
Event Object:
  • x – Type: short, Unit: 1 cm/s², Range: ?
  • y – Type: short, Unit: 1 cm/s², Range: ?
  • z – Type: short, Unit: 1 cm/s², Range: ?

This callback is triggered periodically with the period that is set by setLinearAccelerationPeriod(). The parameters are the linear acceleration for the x, y and z axis.

In MATLAB the set() function can be used to register a callback function to this callback.

In Octave a callback function can be added to this callback using the addLinearAccelerationCallback() function. An added callback function can be removed with the removeLinearAccelerationCallback() function.

callback BrickIMUV2.GravityVectorCallback
Event Object:
  • x – Type: short, Unit: 1 cm/s², Range: [-981 to 981]
  • y – Type: short, Unit: 1 cm/s², Range: [-981 to 981]
  • z – Type: short, Unit: 1 cm/s², Range: [-981 to 981]

This callback is triggered periodically with the period that is set by setGravityVectorPeriod(). The parameters gravity vector for the x, y and z axis.

In MATLAB the set() function can be used to register a callback function to this callback.

In Octave a callback function can be added to this callback using the addGravityVectorCallback() function. An added callback function can be removed with the removeGravityVectorCallback() function.

callback BrickIMUV2.OrientationCallback
Event Object:
  • heading – Type: short, Unit: 1/16 °, Range: [0 to 5760]
  • roll – Type: short, Unit: 1/16 °, Range: [-1440 to 1440]
  • pitch – Type: short, Unit: 1/16 °, Range: [-2880 to 2880]

This callback is triggered periodically with the period that is set by setOrientationPeriod(). The parameters are the orientation (heading (yaw), roll, pitch) of the IMU Brick in Euler angles. See getOrientation() for details.

In MATLAB the set() function can be used to register a callback function to this callback.

In Octave a callback function can be added to this callback using the addOrientationCallback() function. An added callback function can be removed with the removeOrientationCallback() function.

callback BrickIMUV2.QuaternionCallback
Event Object:
  • w – Type: short, Unit: 1/16383, Range: [-214 + 1 to 214 - 1]
  • x – Type: short, Unit: 1/16383, Range: [-214 + 1 to 214 - 1]
  • y – Type: short, Unit: 1/16383, Range: [-214 + 1 to 214 - 1]
  • z – Type: short, Unit: 1/16383, Range: [-214 + 1 to 214 - 1]

This callback is triggered periodically with the period that is set by setQuaternionPeriod(). The parameters are the orientation (w, x, y, z) of the IMU Brick in quaternions. See getQuaternion() for details.

In MATLAB the set() function can be used to register a callback function to this callback.

In Octave a callback function can be added to this callback using the addQuaternionCallback() function. An added callback function can be removed with the removeQuaternionCallback() function.

callback BrickIMUV2.AllDataCallback
Event Object:
  • acceleration – Type: short[], Length: 3
    • 1: x – Type: short, Unit: 1 cm/s², Range: ?
    • 2: y – Type: short, Unit: 1 cm/s², Range: ?
    • 3: z – Type: short, Unit: 1 cm/s², Range: ?
  • magneticField – Type: short[], Length: 3
    • 1: x – Type: short, Unit: 1/16 µT, Range: [-20800 to 20800]
    • 2: y – Type: short, Unit: 1/16 µT, Range: [-20800 to 20800]
    • 3: z – Type: short, Unit: 1/16 µT, Range: [-40000 to 40000]
  • angularVelocity – Type: short[], Length: 3
    • 1: x – Type: short, Unit: 1/16 °/s, Range: ?
    • 2: y – Type: short, Unit: 1/16 °/s, Range: ?
    • 3: z – Type: short, Unit: 1/16 °/s, Range: ?
  • eulerAngle – Type: short[], Length: 3
    • 1: heading – Type: short, Unit: 1/16 °, Range: [0 to 5760]
    • 2: roll – Type: short, Unit: 1/16 °, Range: [-1440 to 1440]
    • 3: pitch – Type: short, Unit: 1/16 °, Range: [-2880 to 2880]
  • quaternion – Type: short[], Length: 4
    • 1: w – Type: short, Unit: 1/16383, Range: [-214 + 1 to 214 - 1]
    • 2: x – Type: short, Unit: 1/16383, Range: [-214 + 1 to 214 - 1]
    • 3: y – Type: short, Unit: 1/16383, Range: [-214 + 1 to 214 - 1]
    • 4: z – Type: short, Unit: 1/16383, Range: [-214 + 1 to 214 - 1]
  • linearAcceleration – Type: short[], Length: 3
    • 1: x – Type: short, Unit: 1 cm/s², Range: ?
    • 2: y – Type: short, Unit: 1 cm/s², Range: ?
    • 3: z – Type: short, Unit: 1 cm/s², Range: ?
  • gravityVector – Type: short[], Length: 3
    • 1: x – Type: short, Unit: 1 cm/s², Range: ?
    • 2: y – Type: short, Unit: 1 cm/s², Range: ?
    • 3: z – Type: short, Unit: 1 cm/s², Range: ?
  • temperature – Type: byte, Unit: 1 °C, Range: [-128 to 127]
  • calibrationStatus – Type: short, Range: [0 to 255]

This callback is triggered periodically with the period that is set by setAllDataPeriod(). The parameters are as for getAllData().

In MATLAB the set() function can be used to register a callback function to this callback.

In Octave a callback function can be added to this callback using the addAllDataCallback() function. An added callback function can be removed with the removeAllDataCallback() function.

Virtual Functions

Virtual functions don't communicate with the device itself, but operate only on the API bindings device object. They can be called without the corresponding IP Connection object being connected.

short[] BrickIMUV2.getAPIVersion()
Return Object:
  • apiVersion – Type: short[], Length: 3
    • 1: major – Type: short, Range: [0 to 255]
    • 2: minor – Type: short, Range: [0 to 255]
    • 3: revision – Type: short, Range: [0 to 255]

Returns the version of the API definition implemented by this API bindings. This is neither the release version of this API bindings nor does it tell you anything about the represented Brick or Bricklet.

boolean BrickIMUV2.getResponseExpected(byte functionId)
Parameters:
  • functionId – Type: byte, Range: See constants
Returns:
  • responseExpected – Type: boolean

Returns the response expected flag for the function specified by the function ID parameter. It is true if the function is expected to send a response, false otherwise.

For getter functions this is enabled by default and cannot be disabled, because those functions will always send a response. For callback configuration functions it is enabled by default too, but can be disabled by setResponseExpected(). For setter functions it is disabled by default and can be enabled.

Enabling the response expected flag for a setter function allows to detect timeouts and other error conditions calls of this setter as well. The device will then send a response for this purpose. If this flag is disabled for a setter function then no response is sent and errors are silently ignored, because they cannot be detected.

The following constants are available for this function:

For functionId:

  • BrickIMUV2.FUNCTION_LEDS_ON = 10
  • BrickIMUV2.FUNCTION_LEDS_OFF = 11
  • BrickIMUV2.FUNCTION_SET_ACCELERATION_PERIOD = 14
  • BrickIMUV2.FUNCTION_SET_MAGNETIC_FIELD_PERIOD = 16
  • BrickIMUV2.FUNCTION_SET_ANGULAR_VELOCITY_PERIOD = 18
  • BrickIMUV2.FUNCTION_SET_TEMPERATURE_PERIOD = 20
  • BrickIMUV2.FUNCTION_SET_ORIENTATION_PERIOD = 22
  • BrickIMUV2.FUNCTION_SET_LINEAR_ACCELERATION_PERIOD = 24
  • BrickIMUV2.FUNCTION_SET_GRAVITY_VECTOR_PERIOD = 26
  • BrickIMUV2.FUNCTION_SET_QUATERNION_PERIOD = 28
  • BrickIMUV2.FUNCTION_SET_ALL_DATA_PERIOD = 30
  • BrickIMUV2.FUNCTION_SET_SENSOR_CONFIGURATION = 41
  • BrickIMUV2.FUNCTION_SET_SENSOR_FUSION_MODE = 43
  • BrickIMUV2.FUNCTION_SET_SPITFP_BAUDRATE_CONFIG = 231
  • BrickIMUV2.FUNCTION_SET_SPITFP_BAUDRATE = 234
  • BrickIMUV2.FUNCTION_ENABLE_STATUS_LED = 238
  • BrickIMUV2.FUNCTION_DISABLE_STATUS_LED = 239
  • BrickIMUV2.FUNCTION_RESET = 243
  • BrickIMUV2.FUNCTION_WRITE_BRICKLET_PLUGIN = 246
void BrickIMUV2.setResponseExpected(byte functionId, boolean responseExpected)
Parameters:
  • functionId – Type: byte, Range: See constants
  • responseExpected – Type: boolean

Changes the response expected flag of the function specified by the function ID parameter. This flag can only be changed for setter (default value: false) and callback configuration functions (default value: true). For getter functions it is always enabled.

Enabling the response expected flag for a setter function allows to detect timeouts and other error conditions calls of this setter as well. The device will then send a response for this purpose. If this flag is disabled for a setter function then no response is sent and errors are silently ignored, because they cannot be detected.

The following constants are available for this function:

For functionId:

  • BrickIMUV2.FUNCTION_LEDS_ON = 10
  • BrickIMUV2.FUNCTION_LEDS_OFF = 11
  • BrickIMUV2.FUNCTION_SET_ACCELERATION_PERIOD = 14
  • BrickIMUV2.FUNCTION_SET_MAGNETIC_FIELD_PERIOD = 16
  • BrickIMUV2.FUNCTION_SET_ANGULAR_VELOCITY_PERIOD = 18
  • BrickIMUV2.FUNCTION_SET_TEMPERATURE_PERIOD = 20
  • BrickIMUV2.FUNCTION_SET_ORIENTATION_PERIOD = 22
  • BrickIMUV2.FUNCTION_SET_LINEAR_ACCELERATION_PERIOD = 24
  • BrickIMUV2.FUNCTION_SET_GRAVITY_VECTOR_PERIOD = 26
  • BrickIMUV2.FUNCTION_SET_QUATERNION_PERIOD = 28
  • BrickIMUV2.FUNCTION_SET_ALL_DATA_PERIOD = 30
  • BrickIMUV2.FUNCTION_SET_SENSOR_CONFIGURATION = 41
  • BrickIMUV2.FUNCTION_SET_SENSOR_FUSION_MODE = 43
  • BrickIMUV2.FUNCTION_SET_SPITFP_BAUDRATE_CONFIG = 231
  • BrickIMUV2.FUNCTION_SET_SPITFP_BAUDRATE = 234
  • BrickIMUV2.FUNCTION_ENABLE_STATUS_LED = 238
  • BrickIMUV2.FUNCTION_DISABLE_STATUS_LED = 239
  • BrickIMUV2.FUNCTION_RESET = 243
  • BrickIMUV2.FUNCTION_WRITE_BRICKLET_PLUGIN = 246
void BrickIMUV2.setResponseExpectedAll(boolean responseExpected)
Parameters:
  • responseExpected – Type: boolean

Changes the response expected flag for all setter and callback configuration functions of this device at once.

Internal Functions

Internal functions are used for maintenance tasks such as flashing a new firmware of changing the UID of a Bricklet. These task should be performed using Brick Viewer instead of using the internal functions directly.

BrickIMUV2.Protocol1BrickletName BrickIMUV2.getProtocol1BrickletName(char port)
Parameters:
  • port – Type: char, Range: ['a' to 'b']
Return Object:
  • protocolVersion – Type: short, Range: [0 to 255]
  • firmwareVersion – Type: short[], Length: 3
    • 1: major – Type: short, Range: [0 to 255]
    • 2: minor – Type: short, Range: [0 to 255]
    • 3: revision – Type: short, Range: [0 to 255]
  • name – Type: String, Length: up to 40

Returns the firmware and protocol version and the name of the Bricklet for a given port.

This functions sole purpose is to allow automatic flashing of v1.x.y Bricklet plugins.

void BrickIMUV2.writeBrickletPlugin(char port, short offset, short[] chunk)
Parameters:
  • port – Type: char, Range: ['a' to 'b']
  • offset – Type: short, Range: [0 to 255]
  • chunk – Type: short[], Length: 32, Range: [0 to 255]

Writes 32 bytes of firmware to the bricklet attached at the given port. The bytes are written to the position offset * 32.

This function is used by Brick Viewer during flashing. It should not be necessary to call it in a normal user program.

short[] BrickIMUV2.readBrickletPlugin(char port, short offset)
Parameters:
  • port – Type: char, Range: ['a' to 'b']
  • offset – Type: short, Range: [0 to 255]
Returns:
  • chunk – Type: short[], Length: 32, Range: [0 to 255]

Reads 32 bytes of firmware from the bricklet attached at the given port. The bytes are read starting at the position offset * 32.

This function is used by Brick Viewer during flashing. It should not be necessary to call it in a normal user program.

Constants

int BrickIMUV2.DEVICE_IDENTIFIER

This constant is used to identify a IMU Brick 2.0.

The getIdentity() function and the IPConnection.EnumerateCallback callback of the IP Connection have a deviceIdentifier parameter to specify the Brick's or Bricklet's type.

String BrickIMUV2.DEVICE_DISPLAY_NAME

This constant represents the human readable name of a IMU Brick 2.0.