This is the description of the C/C++ API bindings for the Servo Brick. General information and technical specifications for the Servo Brick are summarized in its hardware description.
An installation guide for the C/C++ API bindings is part of their general description.
The example code below is Public Domain (CC0 1.0).
Download (example_configuration.c)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 | #include <stdio.h>
#include "ip_connection.h"
#include "brick_servo.h"
#define HOST "localhost"
#define PORT 4223
#define UID "XXYYZZ" // Change XXYYZZ to the UID of your Servo Brick
int main(void) {
// Create IP connection
IPConnection ipcon;
ipcon_create(&ipcon);
// Create device object
Servo servo;
servo_create(&servo, UID, &ipcon);
// Connect to brickd
if(ipcon_connect(&ipcon, HOST, PORT) < 0) {
fprintf(stderr, "Could not connect\n");
return 1;
}
// Don't use device before ipcon is connected
// Configure two servos with voltage 5.5V
// Servo 1: Connected to port 0, period of 19.5ms, pulse width of 1 to 2ms
// and operating angle -100 to 100°
//
// Servo 2: Connected to port 5, period of 20ms, pulse width of 0.95
// to 1.95ms and operating angle -90 to 90°
servo_set_output_voltage(&servo, 5500);
servo_set_degree(&servo, 0, -10000, 10000);
servo_set_pulse_width(&servo, 0, 1000, 2000);
servo_set_period(&servo, 0, 19500);
servo_set_acceleration(&servo, 0, 1000); // Slow acceleration
servo_set_velocity(&servo, 0, 65535); // Full speed
servo_set_degree(&servo, 5, -9000, 9000);
servo_set_pulse_width(&servo, 5, 950, 1950);
servo_set_period(&servo, 5, 20000);
servo_set_acceleration(&servo, 5, 65535); // Full acceleration
servo_set_velocity(&servo, 5, 65535); // Full speed
servo_set_position(&servo, 0, 10000); // Set to most right position
servo_enable(&servo, 0);
servo_set_position(&servo, 5, -9000); // Set to most left position
servo_enable(&servo, 5);
printf("Press key to exit\n");
getchar();
servo_disable(&servo, 0);
servo_disable(&servo, 5);
servo_destroy(&servo);
ipcon_destroy(&ipcon); // Calls ipcon_disconnect internally
return 0;
}
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 | #include <stdio.h>
#include "ip_connection.h"
#include "brick_servo.h"
#define HOST "localhost"
#define PORT 4223
#define UID "XXYYZZ" // Change XXYYZZ to the UID of your Servo Brick
// Use position reached callback to swing back and forth
void cb_position_reached(uint8_t servo_num, int16_t position, void *user_data) {
Servo *servo = (Servo *)user_data;
if(position == 9000) {
printf("Position: 90°, going to -90°\n");
servo_set_position(servo, servo_num, -9000);
} else if(position == -9000) {
printf("Position: -90°, going to 90°\n");
servo_set_position(servo, servo_num, 9000);
} else {
printf("Error\n"); // Can only happen if another program sets position
}
}
int main(void) {
// Create IP connection
IPConnection ipcon;
ipcon_create(&ipcon);
// Create device object
Servo servo;
servo_create(&servo, UID, &ipcon);
// Connect to brickd
if(ipcon_connect(&ipcon, HOST, PORT) < 0) {
fprintf(stderr, "Could not connect\n");
return 1;
}
// Don't use device before ipcon is connected
// Register position reached callback to function cb_position_reached
servo_register_callback(&servo,
SERVO_CALLBACK_POSITION_REACHED,
(void (*)(void))cb_position_reached,
&servo);
// Enable position reached callback
servo_enable_position_reached_callback(&servo);
// Set velocity to 100°/s. This has to be smaller or equal to the
// maximum velocity of the servo you are using, otherwise the position
// reached callback will be called too early
servo_set_velocity(&servo, 0, 10000);
servo_set_position(&servo, 0, 9000);
servo_enable(&servo, 0);
printf("Press key to exit\n");
getchar();
servo_disable(&servo, 0);
servo_destroy(&servo);
ipcon_destroy(&ipcon); // Calls ipcon_disconnect internally
return 0;
}
|
Download (example_pwm_generator.c)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 | #include <stdio.h>
#include "ip_connection.h"
#include "brick_servo.h"
#define HOST "localhost"
#define PORT 4223
#define UID "XXYYZZ" // Change XXYYZZ to the UID of your Servo Brick
// Due to the internal clock dividing mechanism of the Servo Brick not all
// arbitrary PWM frequency values can be achieved. For example, the upper most
// three available PWM frequency values are 1MHz, 500kHz and 250kHz. The steps
// are coarser on the high frequency end and much finer on the low end. You can
// set any value here between 15Hz and 1MHz and the Servo Brick will try to
// match it as closely as possible.
#define PWM_FREQUENCY 175000 // in Hz [15Hz to 1MHz]
#define PWM_DUTY_CYCLE 20 // in % [0% to 100%]
int main(void) {
// Create IP connection
IPConnection ipcon;
ipcon_create(&ipcon);
// Create device object
Servo servo;
servo_create(&servo, UID, &ipcon);
// Connect to brickd
if(ipcon_connect(&ipcon, HOST, PORT) < 0) {
fprintf(stderr, "Could not connect\n");
return 1;
}
// Don't use device before ipcon is connected
// Set degree range to 0-100, this will allow to
// set the PWM duty cycle in 1% steps
servo_set_degree(&servo, 0, 0, 100);
// Set PWM frequency (1-65535µs == 1MHz-15Hz)
int period = 1000000 / PWM_FREQUENCY;
if (period < 1) {
period = 1; // 1MHz
} else if (period > 65535) {
period = 65535; // ~15Hz
}
servo_set_pulse_width(&servo, 0, 0, period);
servo_set_period(&servo, 0, period);
// Fast acceleration and full speed
servo_set_acceleration(&servo, 0, 65535);
servo_set_velocity(&servo, 0, 65535);
// Set PWM duty cycle (0-100 %)
int position = PWM_DUTY_CYCLE;
if (position < 0) {
position = 0;
} else if (position > 100) {
position = 100;
}
servo_set_position(&servo, 0, position);
// Enable PWM signal
servo_enable(&servo, 0);
printf("Press key to exit\n");
getchar();
servo_disable(&servo, 0);
ipcon_destroy(&ipcon); // Calls ipcon_disconnect internally
return 0;
}
|
Most functions of the C/C++ bindings return an error code (e_code
).
Data returned from the device, when a getter is called,
is handled via output parameters. These parameters are labeled with the
ret_
prefix.
Possible error codes are:
as defined in ip_connection.h
.
All functions listed below are thread-safe.
Every function of the Servo Brick API that has a servo_num parameter can
address a servo with the servo number (0 to 6). If it is a setter function then
multiple servos can be addressed at once with a bitmask for the
servos, if the highest bit is set. For example: 1
will address servo 1,
(1 << 1) | (1 << 5) | (1 << 7)
will address servos 1 and 5, 0xFF
will
address all seven servos, etc. This allows to set configurations to several
servos with one function call. It is guaranteed that the changes will take
effect in the same PWM period for all servos you specified in the bitmask.
servo_create
(Servo *servo, const char *uid, IPConnection *ipcon)¶Parameters: |
|
---|
Creates the device object servo
with the unique device ID uid
and adds
it to the IPConnection ipcon
:
Servo servo;
servo_create(&servo, "YOUR_DEVICE_UID", &ipcon);
This device object can be used after the IP connection has been connected.
servo_destroy
(Servo *servo)¶Parameters: |
|
---|
Removes the device object servo
from its IPConnection and destroys it.
The device object cannot be used anymore afterwards.
servo_enable
(Servo *servo, uint8_t servo_num)¶Parameters: |
|
---|---|
Returns: |
|
Enables a servo (0 to 6). If a servo is enabled, the configured position, velocity, acceleration, etc. are applied immediately.
servo_disable
(Servo *servo, uint8_t servo_num)¶Parameters: |
|
---|---|
Returns: |
|
Disables a servo (0 to 6). Disabled servos are not driven at all, i.e. a disabled servo will not hold its position if a load is applied.
servo_is_enabled
(Servo *servo, uint8_t servo_num, bool *ret_enabled)¶Parameters: |
|
---|---|
Output Parameters: |
|
Returns: |
|
Returns true if the specified servo is enabled, false otherwise.
servo_set_position
(Servo *servo, uint8_t servo_num, int16_t position)¶Parameters: |
|
---|---|
Returns: |
|
Sets the position for the specified servo.
The default range of the position is -9000 to 9000, but it can be specified
according to your servo with servo_set_degree()
.
If you want to control a linear servo or RC brushless motor controller or
similar with the Servo Brick, you can also define lengths or speeds with
servo_set_degree()
.
servo_get_position
(Servo *servo, uint8_t servo_num, int16_t *ret_position)¶Parameters: |
|
---|---|
Output Parameters: |
|
Returns: |
|
Returns the position of the specified servo as set by servo_set_position()
.
servo_get_current_position
(Servo *servo, uint8_t servo_num, int16_t *ret_position)¶Parameters: |
|
---|---|
Output Parameters: |
|
Returns: |
|
Returns the current position of the specified servo. This may not be the
value of servo_set_position()
if the servo is currently approaching a
position goal.
servo_set_velocity
(Servo *servo, uint8_t servo_num, uint16_t velocity)¶Parameters: |
|
---|---|
Returns: |
|
Sets the maximum velocity of the specified servo. The velocity
is accelerated according to the value set by servo_set_acceleration()
.
The minimum velocity is 0 (no movement) and the maximum velocity is 65535. With a value of 65535 the position will be set immediately (no velocity).
servo_get_velocity
(Servo *servo, uint8_t servo_num, uint16_t *ret_velocity)¶Parameters: |
|
---|---|
Output Parameters: |
|
Returns: |
|
Returns the velocity of the specified servo as set by servo_set_velocity()
.
servo_get_current_velocity
(Servo *servo, uint8_t servo_num, uint16_t *ret_velocity)¶Parameters: |
|
---|---|
Output Parameters: |
|
Returns: |
|
Returns the current velocity of the specified servo. This may not be the
value of servo_set_velocity()
if the servo is currently approaching a
velocity goal.
servo_set_acceleration
(Servo *servo, uint8_t servo_num, uint16_t acceleration)¶Parameters: |
|
---|---|
Returns: |
|
Sets the acceleration of the specified servo.
The minimum acceleration is 1 and the maximum acceleration is 65535. With a value of 65535 the velocity will be set immediately (no acceleration).
servo_get_acceleration
(Servo *servo, uint8_t servo_num, uint16_t *ret_acceleration)¶Parameters: |
|
---|---|
Output Parameters: |
|
Returns: |
|
Returns the acceleration for the specified servo as set by
servo_set_acceleration()
.
servo_set_output_voltage
(Servo *servo, uint16_t voltage)¶Parameters: |
|
---|---|
Returns: |
|
Sets the output voltages with which the servos are driven.
Note
We recommend that you set this value to the maximum voltage that is specified for your servo, most servos achieve their maximum force only with high voltages.
servo_get_output_voltage
(Servo *servo, uint16_t *ret_voltage)¶Parameters: |
|
---|---|
Output Parameters: |
|
Returns: |
|
Returns the output voltage as specified by servo_set_output_voltage()
.
servo_set_pulse_width
(Servo *servo, uint8_t servo_num, uint16_t min, uint16_t max)¶Parameters: |
|
---|---|
Returns: |
|
Sets the minimum and maximum pulse width of the specified servo.
Usually, servos are controlled with a PWM, whereby the length of the pulse controls the position of the servo. Every servo has different minimum and maximum pulse widths, these can be specified with this function.
If you have a datasheet for your servo that specifies the minimum and maximum pulse width, you should set the values accordingly. If your servo comes without any datasheet you have to find the values via trial and error.
The minimum must be smaller than the maximum.
servo_get_pulse_width
(Servo *servo, uint8_t servo_num, uint16_t *ret_min, uint16_t *ret_max)¶Parameters: |
|
---|---|
Output Parameters: |
|
Returns: |
|
Returns the minimum and maximum pulse width for the specified servo as set by
servo_set_pulse_width()
.
servo_set_degree
(Servo *servo, uint8_t servo_num, int16_t min, int16_t max)¶Parameters: |
|
---|---|
Returns: |
|
Sets the minimum and maximum degree for the specified servo (by default given as °/100).
This only specifies the abstract values between which the minimum and maximum
pulse width is scaled. For example: If you specify a pulse width of 1000µs
to 2000µs and a degree range of -90° to 90°, a call of servo_set_position()
with 0 will result in a pulse width of 1500µs
(-90° = 1000µs, 90° = 2000µs, etc.).
Possible usage:
servo_set_position()
with a resolution of cm/100. Also the velocity will
have a resolution of cm/100s and the acceleration will have a resolution of
cm/100s².servo_set_position()
now controls the rpm.The minimum must be smaller than the maximum.
servo_get_degree
(Servo *servo, uint8_t servo_num, int16_t *ret_min, int16_t *ret_max)¶Parameters: |
|
---|---|
Output Parameters: |
|
Returns: |
|
Returns the minimum and maximum degree for the specified servo as set by
servo_set_degree()
.
servo_set_period
(Servo *servo, uint8_t servo_num, uint16_t period)¶Parameters: |
|
---|---|
Returns: |
|
Sets the period of the specified servo.
Usually, servos are controlled with a PWM. Different servos expect PWMs with different periods. Most servos run well with a period of about 20ms.
If your servo comes with a datasheet that specifies a period, you should set it accordingly. If you don't have a datasheet and you have no idea what the correct period is, the default value will most likely work fine.
servo_get_period
(Servo *servo, uint8_t servo_num, uint16_t *ret_period)¶Parameters: |
|
---|---|
Output Parameters: |
|
Returns: |
|
Returns the period for the specified servo as set by servo_set_period()
.
servo_get_servo_current
(Servo *servo, uint8_t servo_num, uint16_t *ret_current)¶Parameters: |
|
---|---|
Output Parameters: |
|
Returns: |
|
Returns the current consumption of the specified servo.
servo_get_overall_current
(Servo *servo, uint16_t *ret_current)¶Parameters: |
|
---|---|
Output Parameters: |
|
Returns: |
|
Returns the current consumption of all servos together.
servo_get_stack_input_voltage
(Servo *servo, uint16_t *ret_voltage)¶Parameters: |
|
---|---|
Output Parameters: |
|
Returns: |
|
Returns the stack input voltage. The stack input voltage is the voltage that is supplied via the stack, i.e. it is given by a Step-Down or Step-Up Power Supply.
servo_get_external_input_voltage
(Servo *servo, uint16_t *ret_voltage)¶Parameters: |
|
---|---|
Output Parameters: |
|
Returns: |
|
Returns the external input voltage. The external input voltage is given via the black power input connector on the Servo Brick.
If there is an external input voltage and a stack input voltage, the motors will be driven by the external input voltage. If there is only a stack voltage present, the motors will be driven by this voltage.
Warning
This means, if you have a high stack voltage and a low external voltage, the motors will be driven with the low external voltage. If you then remove the external connection, it will immediately be driven by the high stack voltage
servo_set_spitfp_baudrate_config
(Servo *servo, bool enable_dynamic_baudrate, uint32_t minimum_dynamic_baudrate)¶Parameters: |
|
---|---|
Returns: |
|
The SPITF protocol can be used with a dynamic baudrate. If the dynamic baudrate is enabled, the Brick will try to adapt the baudrate for the communication between Bricks and Bricklets according to the amount of data that is transferred.
The baudrate will be increased exponentially if lots of data is sent/received and decreased linearly if little data is sent/received.
This lowers the baudrate in applications where little data is transferred (e.g. a weather station) and increases the robustness. If there is lots of data to transfer (e.g. Thermal Imaging Bricklet) it automatically increases the baudrate as needed.
In cases where some data has to transferred as fast as possible every few seconds (e.g. RS485 Bricklet with a high baudrate but small payload) you may want to turn the dynamic baudrate off to get the highest possible performance.
The maximum value of the baudrate can be set per port with the function
servo_set_spitfp_baudrate()
. If the dynamic baudrate is disabled, the baudrate
as set by servo_set_spitfp_baudrate()
will be used statically.
New in version 2.3.4 (Firmware).
servo_get_spitfp_baudrate_config
(Servo *servo, bool *ret_enable_dynamic_baudrate, uint32_t *ret_minimum_dynamic_baudrate)¶Parameters: |
|
---|---|
Output Parameters: |
|
Returns: |
|
Returns the baudrate config, see servo_set_spitfp_baudrate_config()
.
New in version 2.3.4 (Firmware).
servo_get_send_timeout_count
(Servo *servo, uint8_t communication_method, uint32_t *ret_timeout_count)¶Parameters: |
|
---|---|
Output Parameters: |
|
Returns: |
|
Returns the timeout count for the different communication methods.
The methods 0-2 are available for all Bricks, 3-7 only for Master Bricks.
This function is mostly used for debugging during development, in normal operation the counters should nearly always stay at 0.
The following constants are available for this function:
For communication_method:
New in version 2.3.2 (Firmware).
servo_set_spitfp_baudrate
(Servo *servo, char bricklet_port, uint32_t baudrate)¶Parameters: |
|
---|---|
Returns: |
|
Sets the baudrate for a specific Bricklet port.
If you want to increase the throughput of Bricklets you can increase
the baudrate. If you get a high error count because of high
interference (see servo_get_spitfp_error_count()
) you can decrease the
baudrate.
If the dynamic baudrate feature is enabled, the baudrate set by this
function corresponds to the maximum baudrate (see servo_set_spitfp_baudrate_config()
).
Regulatory testing is done with the default baudrate. If CE compatibility or similar is necessary in your applications we recommend to not change the baudrate.
New in version 2.3.2 (Firmware).
servo_get_spitfp_baudrate
(Servo *servo, char bricklet_port, uint32_t *ret_baudrate)¶Parameters: |
|
---|---|
Output Parameters: |
|
Returns: |
|
Returns the baudrate for a given Bricklet port, see servo_set_spitfp_baudrate()
.
New in version 2.3.2 (Firmware).
servo_get_spitfp_error_count
(Servo *servo, char bricklet_port, uint32_t *ret_error_count_ack_checksum, uint32_t *ret_error_count_message_checksum, uint32_t *ret_error_count_frame, uint32_t *ret_error_count_overflow)¶Parameters: |
|
---|---|
Output Parameters: |
|
Returns: |
|
Returns the error count for the communication between Brick and Bricklet.
The errors are divided into
The errors counts are for errors that occur on the Brick side. All Bricklets have a similar function that returns the errors on the Bricklet side.
New in version 2.3.2 (Firmware).
servo_enable_status_led
(Servo *servo)¶Parameters: |
|
---|---|
Returns: |
|
Enables the status LED.
The status LED is the blue LED next to the USB connector. If enabled is is on and it flickers if data is transfered. If disabled it is always off.
The default state is enabled.
New in version 2.3.1 (Firmware).
servo_disable_status_led
(Servo *servo)¶Parameters: |
|
---|---|
Returns: |
|
Disables the status LED.
The status LED is the blue LED next to the USB connector. If enabled is is on and it flickers if data is transfered. If disabled it is always off.
The default state is enabled.
New in version 2.3.1 (Firmware).
servo_is_status_led_enabled
(Servo *servo, bool *ret_enabled)¶Parameters: |
|
---|---|
Output Parameters: |
|
Returns: |
|
Returns true if the status LED is enabled, false otherwise.
New in version 2.3.1 (Firmware).
servo_get_chip_temperature
(Servo *servo, int16_t *ret_temperature)¶Parameters: |
|
---|---|
Output Parameters: |
|
Returns: |
|
Returns the temperature as measured inside the microcontroller. The value returned is not the ambient temperature!
The temperature is only proportional to the real temperature and it has an accuracy of ±15%. Practically it is only useful as an indicator for temperature changes.
servo_reset
(Servo *servo)¶Parameters: |
|
---|---|
Returns: |
|
Calling this function will reset the Brick. Calling this function on a Brick inside of a stack will reset the whole stack.
After a reset you have to create new device objects, calling functions on the existing ones will result in undefined behavior!
servo_get_identity
(Servo *servo, char ret_uid[8], char ret_connected_uid[8], char *ret_position, uint8_t ret_hardware_version[3], uint8_t ret_firmware_version[3], uint16_t *ret_device_identifier)¶Parameters: |
|
---|---|
Output Parameters: |
|
Returns: |
|
Returns the UID, the UID where the Brick is connected to, the position, the hardware and firmware version as well as the device identifier.
The position is the position in the stack from '0' (bottom) to '8' (top).
The device identifier numbers can be found here. There is also a constant for the device identifier of this Brick.
servo_register_callback
(Servo *servo, int16_t callback_id, void (*function)(void), void *user_data)¶Parameters: |
|
---|
Registers the given function
with the given callback_id
. The
user_data
will be passed as the last parameter to the function
.
The available callback IDs with corresponding function signatures are listed below.
servo_set_minimum_voltage
(Servo *servo, uint16_t voltage)¶Parameters: |
|
---|---|
Returns: |
|
Sets the minimum voltage, below which the SERVO_CALLBACK_UNDER_VOLTAGE
callback
is triggered. The minimum possible value that works with the Servo Brick is 5V.
You can use this function to detect the discharge of a battery that is used
to drive the stepper motor. If you have a fixed power supply, you likely do
not need this functionality.
servo_get_minimum_voltage
(Servo *servo, uint16_t *ret_voltage)¶Parameters: |
|
---|---|
Output Parameters: |
|
Returns: |
|
Returns the minimum voltage as set by servo_set_minimum_voltage()
servo_enable_position_reached_callback
(Servo *servo)¶Parameters: |
|
---|---|
Returns: |
|
Enables the SERVO_CALLBACK_POSITION_REACHED
callback.
Default is disabled.
New in version 2.0.1 (Firmware).
servo_disable_position_reached_callback
(Servo *servo)¶Parameters: |
|
---|---|
Returns: |
|
Disables the SERVO_CALLBACK_POSITION_REACHED
callback.
New in version 2.0.1 (Firmware).
servo_is_position_reached_callback_enabled
(Servo *servo, bool *ret_enabled)¶Parameters: |
|
---|---|
Output Parameters: |
|
Returns: |
|
Returns true if SERVO_CALLBACK_POSITION_REACHED
callback is enabled, false otherwise.
New in version 2.0.1 (Firmware).
servo_enable_velocity_reached_callback
(Servo *servo)¶Parameters: |
|
---|---|
Returns: |
|
Enables the SERVO_CALLBACK_VELOCITY_REACHED
callback.
Default is disabled.
New in version 2.0.1 (Firmware).
servo_disable_velocity_reached_callback
(Servo *servo)¶Parameters: |
|
---|---|
Returns: |
|
Disables the SERVO_CALLBACK_VELOCITY_REACHED
callback.
Default is disabled.
New in version 2.0.1 (Firmware).
servo_is_velocity_reached_callback_enabled
(Servo *servo, bool *ret_enabled)¶Parameters: |
|
---|---|
Output Parameters: |
|
Returns: |
|
Returns true if SERVO_CALLBACK_VELOCITY_REACHED
callback is enabled, false otherwise.
New in version 2.0.1 (Firmware).
Callbacks can be registered to receive time critical or recurring data from the
device. The registration is done with the servo_register_callback()
function:
void my_callback(int value, void *user_data) { printf("Value: %d\n", value); } servo_register_callback(&servo, SERVO_CALLBACK_EXAMPLE, (void (*)(void))my_callback, NULL);
The available constants with corresponding function signatures are described below.
Note
Using callbacks for recurring events is always preferred compared to using getters. It will use less USB bandwidth and the latency will be a lot better, since there is no round trip time.
SERVO_CALLBACK_UNDER_VOLTAGE
¶void callback(uint16_t voltage, void *user_data)
Callback Parameters: |
|
---|
This callback is triggered when the input voltage drops below the value set by
servo_set_minimum_voltage()
. The parameter is the current voltage.
SERVO_CALLBACK_POSITION_REACHED
¶void callback(uint8_t servo_num, int16_t position, void *user_data)
Callback Parameters: |
|
---|
This callback is triggered when a position set by servo_set_position()
is reached. If the new position matches the current position then the
callback is not triggered, because the servo didn't move.
The parameters are the servo and the position that is reached.
You can enable this callback with servo_enable_position_reached_callback()
.
Note
Since we can't get any feedback from the servo, this only works if the
velocity (see servo_set_velocity()
) is set smaller or equal to the
maximum velocity of the servo. Otherwise the servo will lag behind the
control value and the callback will be triggered too early.
SERVO_CALLBACK_VELOCITY_REACHED
¶void callback(uint8_t servo_num, int16_t velocity, void *user_data)
Callback Parameters: |
|
---|
This callback is triggered when a velocity set by servo_set_velocity()
is reached. The parameters are the servo and the velocity that is reached.
You can enable this callback with servo_enable_velocity_reached_callback()
.
Note
Since we can't get any feedback from the servo, this only works if the
acceleration (see servo_set_acceleration()
) is set smaller or equal to the
maximum acceleration of the servo. Otherwise the servo will lag behind the
control value and the callback will be triggered too early.
Virtual functions don't communicate with the device itself, but operate only on the API bindings device object. They can be called without the corresponding IP Connection object being connected.
servo_get_api_version
(Servo *servo, uint8_t ret_api_version[3])¶Parameters: |
|
---|---|
Output Parameters: |
|
Returns: |
|
Returns the version of the API definition implemented by this API bindings. This is neither the release version of this API bindings nor does it tell you anything about the represented Brick or Bricklet.
servo_get_response_expected
(Servo *servo, uint8_t function_id, bool *ret_response_expected)¶Parameters: |
|
---|---|
Output Parameters: |
|
Returns: |
|
Returns the response expected flag for the function specified by the function ID parameter. It is true if the function is expected to send a response, false otherwise.
For getter functions this is enabled by default and cannot be disabled,
because those functions will always send a response. For callback configuration
functions it is enabled by default too, but can be disabled by
servo_set_response_expected()
. For setter functions it is disabled by default
and can be enabled.
Enabling the response expected flag for a setter function allows to detect timeouts and other error conditions calls of this setter as well. The device will then send a response for this purpose. If this flag is disabled for a setter function then no response is sent and errors are silently ignored, because they cannot be detected.
The following constants are available for this function:
For function_id:
servo_set_response_expected
(Servo *servo, uint8_t function_id, bool response_expected)¶Parameters: |
|
---|---|
Returns: |
|
Changes the response expected flag of the function specified by the function ID parameter. This flag can only be changed for setter (default value: false) and callback configuration functions (default value: true). For getter functions it is always enabled.
Enabling the response expected flag for a setter function allows to detect timeouts and other error conditions calls of this setter as well. The device will then send a response for this purpose. If this flag is disabled for a setter function then no response is sent and errors are silently ignored, because they cannot be detected.
The following constants are available for this function:
For function_id:
servo_set_response_expected_all
(Servo *servo, bool response_expected)¶Parameters: |
|
---|---|
Returns: |
|
Changes the response expected flag for all setter and callback configuration functions of this device at once.
Internal functions are used for maintenance tasks such as flashing a new firmware of changing the UID of a Bricklet. These task should be performed using Brick Viewer instead of using the internal functions directly.
servo_get_protocol1_bricklet_name
(Servo *servo, char port, uint8_t *ret_protocol_version, uint8_t ret_firmware_version[3], char ret_name[40])¶Parameters: |
|
---|---|
Output Parameters: |
|
Returns: |
|
Returns the firmware and protocol version and the name of the Bricklet for a given port.
This functions sole purpose is to allow automatic flashing of v1.x.y Bricklet plugins.
servo_write_bricklet_plugin
(Servo *servo, char port, uint8_t offset, uint8_t chunk[32])¶Parameters: |
|
---|---|
Returns: |
|
Writes 32 bytes of firmware to the bricklet attached at the given port. The bytes are written to the position offset * 32.
This function is used by Brick Viewer during flashing. It should not be necessary to call it in a normal user program.
servo_read_bricklet_plugin
(Servo *servo, char port, uint8_t offset, uint8_t ret_chunk[32])¶Parameters: |
|
---|---|
Output Parameters: |
|
Returns: |
|
Reads 32 bytes of firmware from the bricklet attached at the given port. The bytes are read starting at the position offset * 32.
This function is used by Brick Viewer during flashing. It should not be necessary to call it in a normal user program.
SERVO_DEVICE_IDENTIFIER
¶This constant is used to identify a Servo Brick.
The servo_get_identity()
function and the IPCON_CALLBACK_ENUMERATE
callback of the IP Connection have a device_identifier
parameter to specify
the Brick's or Bricklet's type.
SERVO_DEVICE_DISPLAY_NAME
¶This constant represents the human readable name of a Servo Brick.