This is the description of the JavaScript API bindings for the Servo Brick. General information and technical specifications for the Servo Brick are summarized in its hardware description.
An installation guide for the JavaScript API bindings is part of their general description.
The example code below is Public Domain (CC0 1.0).
Download (ExampleConfiguration.js)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 | var Tinkerforge = require('tinkerforge');
var HOST = 'localhost';
var PORT = 4223;
var UID = 'XXYYZZ'; // Change XXYYZZ to the UID of your Servo Brick
var ipcon = new Tinkerforge.IPConnection(); // Create IP connection
var servo = new Tinkerforge.BrickServo(UID, ipcon); // Create device object
ipcon.connect(HOST, PORT,
function (error) {
console.log('Error: ' + error);
}
); // Connect to brickd
// Don't use device before ipcon is connected
ipcon.on(Tinkerforge.IPConnection.CALLBACK_CONNECTED,
function (connectReason) {
// Configure two servos with voltage 5.5V
// Servo 1: Connected to port 0, period of 19.5ms, pulse width of 1 to 2ms
// and operating angle -100 to 100°
//
// Servo 2: Connected to port 5, period of 20ms, pulse width of 0.95
// to 1.95ms and operating angle -90 to 90°
servo.setOutputVoltage(5500);
servo.setDegree(0, -10000, 10000);
servo.setPulseWidth(0, 1000, 2000);
servo.setPeriod(0, 19500);
servo.setAcceleration(0, 1000); // Slow acceleration
servo.setVelocity(0, 65535); // Full speed
servo.setDegree(5, -9000, 9000);
servo.setPulseWidth(5, 950, 1950);
servo.setPeriod(5, 20000);
servo.setAcceleration(5, 65535); // Full acceleration
servo.setVelocity(5, 65535); // Full speed
servo.setPosition(0, 10000); // Set to most right position
servo.enable(0);
servo.setPosition(5, -9000); // Set to most left position
servo.enable(5);
}
);
console.log('Press key to exit');
process.stdin.on('data',
function (data) {
servo.disable(0);
servo.disable(5);
ipcon.disconnect();
process.exit(0);
}
);
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 | var Tinkerforge = require('tinkerforge');
var HOST = 'localhost';
var PORT = 4223;
var UID = 'XXYYZZ'; // Change XXYYZZ to the UID of your Servo Brick
var ipcon = new Tinkerforge.IPConnection(); // Create IP connection
var servo = new Tinkerforge.BrickServo(UID, ipcon); // Create device object
ipcon.connect(HOST, PORT,
function (error) {
console.log('Error: ' + error);
}
); // Connect to brickd
// Don't use device before ipcon is connected
ipcon.on(Tinkerforge.IPConnection.CALLBACK_CONNECTED,
function (connectReason) {
// Enable position reached callback
servo.enablePositionReachedCallback();
// Set velocity to 100°/s. This has to be smaller or equal to the
// maximum velocity of the servo you are using, otherwise the position
// reached callback will be called too early
servo.setVelocity(0, 10000);
servo.setPosition(0, 9000);
servo.enable(0);
}
);
// Register position reached callback
servo.on(Tinkerforge.BrickServo.CALLBACK_POSITION_REACHED,
// Use position reached callback to swing back and forth
function (servoNum, position) {
if(position === 9000) {
console.log('Position: 90°, going to -90°');
servo.setPosition(servoNum, -9000);
}
else if(position === -9000) {
console.log('Position: -90°, going to 90°');
servo.setPosition(servoNum, 9000);
}
else {
console.log('Error'); // Can only happen if another program sets position
}
}
);
console.log('Press key to exit');
process.stdin.on('data',
function (data) {
servo.disable(0);
ipcon.disconnect();
process.exit(0);
}
);
|
Download (ExampleConfiguration.html), Test (ExampleConfiguration.html)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 | <!DOCTYPE html>
<html>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<head>
<title>Tinkerforge | JavaScript Example</title>
</head>
<body>
<div style="text-align:center;">
<h1>Servo Brick Configuration Example</h1>
<p>
<input value="localhost" id="host" type="text" size="20">:
<input value="4280" id="port" type="text" size="5">,
<input value="uid" id="uid" type="text" size="5">
<input value="Start Example" id="start" type="button" onclick="startExample();">
</p>
<p>
<textarea readonly id="text" cols="80" rows="24" style="resize:none;"
>Press "Start Example" to begin ...</textarea>
</p>
</div>
<script src="./Tinkerforge.js" type='text/javascript'></script>
<script type='text/javascript'>
var ipcon;
var textArea = document.getElementById("text");
function startExample() {
textArea.value = "";
var HOST = document.getElementById("host").value;
var PORT = parseInt(document.getElementById("port").value);
var UID = document.getElementById("uid").value;
if(ipcon !== undefined) {
ipcon.disconnect();
}
ipcon = new Tinkerforge.IPConnection(); // Create IP connection
var servo = new Tinkerforge.BrickServo(UID, ipcon); // Create device object
ipcon.connect(HOST, PORT,
function(error) {
textArea.value += 'Error: ' + error + '\n';
}
); // Connect to brickd
// Don't use device before ipcon is connected
ipcon.on(Tinkerforge.IPConnection.CALLBACK_CONNECTED,
function (connectReason) {
// Configure two servos with voltage 5.5V
// Servo 1: Connected to port 0, period of 19.5ms, pulse width of 1 to 2ms
// and operating angle -100 to 100°
//
// Servo 2: Connected to port 5, period of 20ms, pulse width of 0.95
// to 1.95ms and operating angle -90 to 90°
servo.setOutputVoltage(5500);
servo.setDegree(0, -10000, 10000);
servo.setPulseWidth(0, 1000, 2000);
servo.setPeriod(0, 19500);
servo.setAcceleration(0, 1000); // Slow acceleration
servo.setVelocity(0, 65535); // Full speed
servo.setDegree(5, -9000, 9000);
servo.setPulseWidth(5, 950, 1950);
servo.setPeriod(5, 20000);
servo.setAcceleration(5, 65535); // Full acceleration
servo.setVelocity(5, 65535); // Full speed
servo.setPosition(0, 10000); // Set to most right position
servo.enable(0);
servo.setPosition(5, -9000); // Set to most left position
servo.enable(5);
}
);
}
</script>
</body>
</html>
|
Download (ExampleCallback.html), Test (ExampleCallback.html)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 | <!DOCTYPE html>
<html>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<head>
<title>Tinkerforge | JavaScript Example</title>
</head>
<body>
<div style="text-align:center;">
<h1>Servo Brick Callback Example</h1>
<p>
<input value="localhost" id="host" type="text" size="20">:
<input value="4280" id="port" type="text" size="5">,
<input value="uid" id="uid" type="text" size="5">
<input value="Start Example" id="start" type="button" onclick="startExample();">
</p>
<p>
<textarea readonly id="text" cols="80" rows="24" style="resize:none;"
>Press "Start Example" to begin ...</textarea>
</p>
</div>
<script src="./Tinkerforge.js" type='text/javascript'></script>
<script type='text/javascript'>
var ipcon;
var textArea = document.getElementById("text");
function startExample() {
textArea.value = "";
var HOST = document.getElementById("host").value;
var PORT = parseInt(document.getElementById("port").value);
var UID = document.getElementById("uid").value;
if(ipcon !== undefined) {
ipcon.disconnect();
}
ipcon = new Tinkerforge.IPConnection(); // Create IP connection
var servo = new Tinkerforge.BrickServo(UID, ipcon); // Create device object
ipcon.connect(HOST, PORT,
function(error) {
textArea.value += 'Error: ' + error + '\n';
}
); // Connect to brickd
// Don't use device before ipcon is connected
ipcon.on(Tinkerforge.IPConnection.CALLBACK_CONNECTED,
function (connectReason) {
// Enable position reached callback
servo.enablePositionReachedCallback();
// Set velocity to 100°/s. This has to be smaller or equal to the
// maximum velocity of the servo you are using, otherwise the position
// reached callback will be called too early
servo.setVelocity(0, 10000);
servo.setPosition(0, 9000);
servo.enable(0);
}
);
// Register position reached callback
servo.on(Tinkerforge.BrickServo.CALLBACK_POSITION_REACHED,
// Use position reached callback to swing back and forth
function (servoNum, position) {
if(position === 9000) {
textArea.value += 'Position: 90°, going to -90°\n';
servo.setPosition(servoNum, -9000);
}
else if(position === -9000) {
textArea.value += 'Position: -90°, going to 90°\n';
servo.setPosition(servoNum, 9000);
}
else {
textArea.value += 'Error\n'; // Can only happen if another program sets position
}
textArea.scrollTop = textArea.scrollHeight;
}
);
}
</script>
</body>
</html>
|
Generally, every function of the JavaScript bindings can take two optional
parameters, returnCallback
and errorCallback
. These are two user
defined callback functions. The returnCallback
function is called with the
results as arguments, if the function returns its results asynchronously. The
errorCallback
is called with an error code in case of an error. The error
code can be one of the following values:
The namespace for the JavaScript bindings is Tinkerforge.*
.
Every function of the Servo Brick API that has a servo_num parameter can
address a servo with the servo number (0 to 6). If it is a setter function then
multiple servos can be addressed at once with a bitmask for the
servos, if the highest bit is set. For example: 1
will address servo 1,
(1 << 1) | (1 << 5) | (1 << 7)
will address servos 1 and 5, 0xFF
will
address all seven servos, etc. This allows to set configurations to several
servos with one function call. It is guaranteed that the changes will take
effect in the same PWM period for all servos you specified in the bitmask.
BrickServo
(uid, ipcon)¶Parameters: |
|
---|---|
Returns: |
|
Creates an object with the unique device ID uid
:
var servo = new BrickServo("YOUR_DEVICE_UID", ipcon);
This object can then be used after the IP Connection is connected.
BrickServo.
enable
(servoNum[, returnCallback][, errorCallback])¶Parameters: |
|
---|---|
Callback Parameters: |
|
Returns: |
|
Enables a servo (0 to 6). If a servo is enabled, the configured position, velocity, acceleration, etc. are applied immediately.
BrickServo.
disable
(servoNum[, returnCallback][, errorCallback])¶Parameters: |
|
---|---|
Callback Parameters: |
|
Returns: |
|
Disables a servo (0 to 6). Disabled servos are not driven at all, i.e. a disabled servo will not hold its position if a load is applied.
BrickServo.
isEnabled
(servoNum[, returnCallback][, errorCallback])¶Parameters: |
|
---|---|
Callback Parameters: |
|
Returns: |
|
Returns true if the specified servo is enabled, false otherwise.
BrickServo.
setPosition
(servoNum, position[, returnCallback][, errorCallback])¶Parameters: |
|
---|---|
Callback Parameters: |
|
Returns: |
|
Sets the position for the specified servo.
The default range of the position is -9000 to 9000, but it can be specified
according to your servo with setDegree()
.
If you want to control a linear servo or RC brushless motor controller or
similar with the Servo Brick, you can also define lengths or speeds with
setDegree()
.
BrickServo.
getPosition
(servoNum[, returnCallback][, errorCallback])¶Parameters: |
|
---|---|
Callback Parameters: |
|
Returns: |
|
Returns the position of the specified servo as set by setPosition()
.
BrickServo.
getCurrentPosition
(servoNum[, returnCallback][, errorCallback])¶Parameters: |
|
---|---|
Callback Parameters: |
|
Returns: |
|
Returns the current position of the specified servo. This may not be the
value of setPosition()
if the servo is currently approaching a
position goal.
BrickServo.
setVelocity
(servoNum, velocity[, returnCallback][, errorCallback])¶Parameters: |
|
---|---|
Callback Parameters: |
|
Returns: |
|
Sets the maximum velocity of the specified servo. The velocity
is accelerated according to the value set by setAcceleration()
.
The minimum velocity is 0 (no movement) and the maximum velocity is 65535. With a value of 65535 the position will be set immediately (no velocity).
BrickServo.
getVelocity
(servoNum[, returnCallback][, errorCallback])¶Parameters: |
|
---|---|
Callback Parameters: |
|
Returns: |
|
Returns the velocity of the specified servo as set by setVelocity()
.
BrickServo.
getCurrentVelocity
(servoNum[, returnCallback][, errorCallback])¶Parameters: |
|
---|---|
Callback Parameters: |
|
Returns: |
|
Returns the current velocity of the specified servo. This may not be the
value of setVelocity()
if the servo is currently approaching a
velocity goal.
BrickServo.
setAcceleration
(servoNum, acceleration[, returnCallback][, errorCallback])¶Parameters: |
|
---|---|
Callback Parameters: |
|
Returns: |
|
Sets the acceleration of the specified servo.
The minimum acceleration is 1 and the maximum acceleration is 65535. With a value of 65535 the velocity will be set immediately (no acceleration).
BrickServo.
getAcceleration
(servoNum[, returnCallback][, errorCallback])¶Parameters: |
|
---|---|
Callback Parameters: |
|
Returns: |
|
Returns the acceleration for the specified servo as set by
setAcceleration()
.
BrickServo.
setOutputVoltage
(voltage[, returnCallback][, errorCallback])¶Parameters: |
|
---|---|
Callback Parameters: |
|
Returns: |
|
Sets the output voltages with which the servos are driven.
Note
We recommend that you set this value to the maximum voltage that is specified for your servo, most servos achieve their maximum force only with high voltages.
BrickServo.
getOutputVoltage
([returnCallback][, errorCallback])¶Callback Parameters: |
|
---|---|
Returns: |
|
Returns the output voltage as specified by setOutputVoltage()
.
BrickServo.
setPulseWidth
(servoNum, min, max[, returnCallback][, errorCallback])¶Parameters: |
|
---|---|
Callback Parameters: |
|
Returns: |
|
Sets the minimum and maximum pulse width of the specified servo.
Usually, servos are controlled with a PWM, whereby the length of the pulse controls the position of the servo. Every servo has different minimum and maximum pulse widths, these can be specified with this function.
If you have a datasheet for your servo that specifies the minimum and maximum pulse width, you should set the values accordingly. If your servo comes without any datasheet you have to find the values via trial and error.
The minimum must be smaller than the maximum.
BrickServo.
getPulseWidth
(servoNum[, returnCallback][, errorCallback])¶Parameters: |
|
---|---|
Callback Parameters: |
|
Returns: |
|
Returns the minimum and maximum pulse width for the specified servo as set by
setPulseWidth()
.
BrickServo.
setDegree
(servoNum, min, max[, returnCallback][, errorCallback])¶Parameters: |
|
---|---|
Callback Parameters: |
|
Returns: |
|
Sets the minimum and maximum degree for the specified servo (by default given as °/100).
This only specifies the abstract values between which the minimum and maximum
pulse width is scaled. For example: If you specify a pulse width of 1000µs
to 2000µs and a degree range of -90° to 90°, a call of setPosition()
with 0 will result in a pulse width of 1500µs
(-90° = 1000µs, 90° = 2000µs, etc.).
Possible usage:
setPosition()
with a resolution of cm/100. Also the velocity will
have a resolution of cm/100s and the acceleration will have a resolution of
cm/100s².setPosition()
now controls the rpm.The minimum must be smaller than the maximum.
BrickServo.
getDegree
(servoNum[, returnCallback][, errorCallback])¶Parameters: |
|
---|---|
Callback Parameters: |
|
Returns: |
|
Returns the minimum and maximum degree for the specified servo as set by
setDegree()
.
BrickServo.
setPeriod
(servoNum, period[, returnCallback][, errorCallback])¶Parameters: |
|
---|---|
Callback Parameters: |
|
Returns: |
|
Sets the period of the specified servo.
Usually, servos are controlled with a PWM. Different servos expect PWMs with different periods. Most servos run well with a period of about 20ms.
If your servo comes with a datasheet that specifies a period, you should set it accordingly. If you don't have a datasheet and you have no idea what the correct period is, the default value will most likely work fine.
BrickServo.
getPeriod
(servoNum[, returnCallback][, errorCallback])¶Parameters: |
|
---|---|
Callback Parameters: |
|
Returns: |
|
Returns the period for the specified servo as set by setPeriod()
.
BrickServo.
getServoCurrent
(servoNum[, returnCallback][, errorCallback])¶Parameters: |
|
---|---|
Callback Parameters: |
|
Returns: |
|
Returns the current consumption of the specified servo.
BrickServo.
getOverallCurrent
([returnCallback][, errorCallback])¶Callback Parameters: |
|
---|---|
Returns: |
|
Returns the current consumption of all servos together.
BrickServo.
getStackInputVoltage
([returnCallback][, errorCallback])¶Callback Parameters: |
|
---|---|
Returns: |
|
Returns the stack input voltage. The stack input voltage is the voltage that is supplied via the stack, i.e. it is given by a Step-Down or Step-Up Power Supply.
BrickServo.
getExternalInputVoltage
([returnCallback][, errorCallback])¶Callback Parameters: |
|
---|---|
Returns: |
|
Returns the external input voltage. The external input voltage is given via the black power input connector on the Servo Brick.
If there is an external input voltage and a stack input voltage, the motors will be driven by the external input voltage. If there is only a stack voltage present, the motors will be driven by this voltage.
Warning
This means, if you have a high stack voltage and a low external voltage, the motors will be driven with the low external voltage. If you then remove the external connection, it will immediately be driven by the high stack voltage
BrickServo.
setSPITFPBaudrateConfig
(enableDynamicBaudrate, minimumDynamicBaudrate[, returnCallback][, errorCallback])¶Parameters: |
|
---|---|
Callback Parameters: |
|
Returns: |
|
The SPITF protocol can be used with a dynamic baudrate. If the dynamic baudrate is enabled, the Brick will try to adapt the baudrate for the communication between Bricks and Bricklets according to the amount of data that is transferred.
The baudrate will be increased exponentially if lots of data is sent/received and decreased linearly if little data is sent/received.
This lowers the baudrate in applications where little data is transferred (e.g. a weather station) and increases the robustness. If there is lots of data to transfer (e.g. Thermal Imaging Bricklet) it automatically increases the baudrate as needed.
In cases where some data has to transferred as fast as possible every few seconds (e.g. RS485 Bricklet with a high baudrate but small payload) you may want to turn the dynamic baudrate off to get the highest possible performance.
The maximum value of the baudrate can be set per port with the function
setSPITFPBaudrate()
. If the dynamic baudrate is disabled, the baudrate
as set by setSPITFPBaudrate()
will be used statically.
New in version 2.3.4 (Firmware).
BrickServo.
getSPITFPBaudrateConfig
([returnCallback][, errorCallback])¶Callback Parameters: |
|
---|---|
Returns: |
|
Returns the baudrate config, see setSPITFPBaudrateConfig()
.
New in version 2.3.4 (Firmware).
BrickServo.
getSendTimeoutCount
(communicationMethod[, returnCallback][, errorCallback])¶Parameters: |
|
---|---|
Callback Parameters: |
|
Returns: |
|
Returns the timeout count for the different communication methods.
The methods 0-2 are available for all Bricks, 3-7 only for Master Bricks.
This function is mostly used for debugging during development, in normal operation the counters should nearly always stay at 0.
The following constants are available for this function:
For communication_method:
New in version 2.3.2 (Firmware).
BrickServo.
setSPITFPBaudrate
(brickletPort, baudrate[, returnCallback][, errorCallback])¶Parameters: |
|
---|---|
Callback Parameters: |
|
Returns: |
|
Sets the baudrate for a specific Bricklet port.
If you want to increase the throughput of Bricklets you can increase
the baudrate. If you get a high error count because of high
interference (see getSPITFPErrorCount()
) you can decrease the
baudrate.
If the dynamic baudrate feature is enabled, the baudrate set by this
function corresponds to the maximum baudrate (see setSPITFPBaudrateConfig()
).
Regulatory testing is done with the default baudrate. If CE compatibility or similar is necessary in your applications we recommend to not change the baudrate.
New in version 2.3.2 (Firmware).
BrickServo.
getSPITFPBaudrate
(brickletPort[, returnCallback][, errorCallback])¶Parameters: |
|
---|---|
Callback Parameters: |
|
Returns: |
|
Returns the baudrate for a given Bricklet port, see setSPITFPBaudrate()
.
New in version 2.3.2 (Firmware).
BrickServo.
getSPITFPErrorCount
(brickletPort[, returnCallback][, errorCallback])¶Parameters: |
|
---|---|
Callback Parameters: |
|
Returns: |
|
Returns the error count for the communication between Brick and Bricklet.
The errors are divided into
The errors counts are for errors that occur on the Brick side. All Bricklets have a similar function that returns the errors on the Bricklet side.
New in version 2.3.2 (Firmware).
BrickServo.
enableStatusLED
([returnCallback][, errorCallback])¶Callback Parameters: |
|
---|---|
Returns: |
|
Enables the status LED.
The status LED is the blue LED next to the USB connector. If enabled is is on and it flickers if data is transfered. If disabled it is always off.
The default state is enabled.
New in version 2.3.1 (Firmware).
BrickServo.
disableStatusLED
([returnCallback][, errorCallback])¶Callback Parameters: |
|
---|---|
Returns: |
|
Disables the status LED.
The status LED is the blue LED next to the USB connector. If enabled is is on and it flickers if data is transfered. If disabled it is always off.
The default state is enabled.
New in version 2.3.1 (Firmware).
BrickServo.
isStatusLEDEnabled
([returnCallback][, errorCallback])¶Callback Parameters: |
|
---|---|
Returns: |
|
Returns true if the status LED is enabled, false otherwise.
New in version 2.3.1 (Firmware).
BrickServo.
getChipTemperature
([returnCallback][, errorCallback])¶Callback Parameters: |
|
---|---|
Returns: |
|
Returns the temperature as measured inside the microcontroller. The value returned is not the ambient temperature!
The temperature is only proportional to the real temperature and it has an accuracy of ±15%. Practically it is only useful as an indicator for temperature changes.
BrickServo.
reset
([returnCallback][, errorCallback])¶Callback Parameters: |
|
---|---|
Returns: |
|
Calling this function will reset the Brick. Calling this function on a Brick inside of a stack will reset the whole stack.
After a reset you have to create new device objects, calling functions on the existing ones will result in undefined behavior!
BrickServo.
getIdentity
([returnCallback][, errorCallback])¶Callback Parameters: |
|
---|---|
Returns: |
|
Returns the UID, the UID where the Brick is connected to, the position, the hardware and firmware version as well as the device identifier.
The position is the position in the stack from '0' (bottom) to '8' (top).
The device identifier numbers can be found here. There is also a constant for the device identifier of this Brick.
BrickServo.
on
(callback_id, function[, errorCallback])¶Parameters: |
|
---|---|
Returns: |
|
Registers the given function
with the given callback_id
.
The available callback IDs with corresponding function signatures are listed below.
BrickServo.
setMinimumVoltage
(voltage[, returnCallback][, errorCallback])¶Parameters: |
|
---|---|
Callback Parameters: |
|
Returns: |
|
Sets the minimum voltage, below which the CALLBACK_UNDER_VOLTAGE
callback
is triggered. The minimum possible value that works with the Servo Brick is 5V.
You can use this function to detect the discharge of a battery that is used
to drive the stepper motor. If you have a fixed power supply, you likely do
not need this functionality.
BrickServo.
getMinimumVoltage
([returnCallback][, errorCallback])¶Callback Parameters: |
|
---|---|
Returns: |
|
Returns the minimum voltage as set by setMinimumVoltage()
BrickServo.
enablePositionReachedCallback
([returnCallback][, errorCallback])¶Callback Parameters: |
|
---|---|
Returns: |
|
Enables the CALLBACK_POSITION_REACHED
callback.
Default is disabled.
New in version 2.0.1 (Firmware).
BrickServo.
disablePositionReachedCallback
([returnCallback][, errorCallback])¶Callback Parameters: |
|
---|---|
Returns: |
|
Disables the CALLBACK_POSITION_REACHED
callback.
New in version 2.0.1 (Firmware).
BrickServo.
isPositionReachedCallbackEnabled
([returnCallback][, errorCallback])¶Callback Parameters: |
|
---|---|
Returns: |
|
Returns true if CALLBACK_POSITION_REACHED
callback is enabled, false otherwise.
New in version 2.0.1 (Firmware).
BrickServo.
enableVelocityReachedCallback
([returnCallback][, errorCallback])¶Callback Parameters: |
|
---|---|
Returns: |
|
Enables the CALLBACK_VELOCITY_REACHED
callback.
Default is disabled.
New in version 2.0.1 (Firmware).
BrickServo.
disableVelocityReachedCallback
([returnCallback][, errorCallback])¶Callback Parameters: |
|
---|---|
Returns: |
|
Disables the CALLBACK_VELOCITY_REACHED
callback.
Default is disabled.
New in version 2.0.1 (Firmware).
BrickServo.
isVelocityReachedCallbackEnabled
([returnCallback][, errorCallback])¶Callback Parameters: |
|
---|---|
Returns: |
|
Returns true if CALLBACK_VELOCITY_REACHED
callback is enabled, false otherwise.
New in version 2.0.1 (Firmware).
Callbacks can be registered to receive
time critical or recurring data from the device. The registration is done
with the on()
function of
the device object. The first parameter is the callback ID and the second
parameter the callback function:
servo.on(BrickServo.CALLBACK_EXAMPLE,
function (param) {
console.log(param);
}
);
The available constants with inherent number and type of parameters are described below.
Note
Using callbacks for recurring events is always preferred compared to using getters. It will use less USB bandwidth and the latency will be a lot better, since there is no round trip time.
BrickServo.
CALLBACK_UNDER_VOLTAGE
¶Callback Parameters: |
|
---|
This callback is triggered when the input voltage drops below the value set by
setMinimumVoltage()
. The parameter is the current voltage.
BrickServo.
CALLBACK_POSITION_REACHED
¶Callback Parameters: |
|
---|
This callback is triggered when a position set by setPosition()
is reached. If the new position matches the current position then the
callback is not triggered, because the servo didn't move.
The parameters are the servo and the position that is reached.
You can enable this callback with enablePositionReachedCallback()
.
Note
Since we can't get any feedback from the servo, this only works if the
velocity (see setVelocity()
) is set smaller or equal to the
maximum velocity of the servo. Otherwise the servo will lag behind the
control value and the callback will be triggered too early.
BrickServo.
CALLBACK_VELOCITY_REACHED
¶Callback Parameters: |
|
---|
This callback is triggered when a velocity set by setVelocity()
is reached. The parameters are the servo and the velocity that is reached.
You can enable this callback with enableVelocityReachedCallback()
.
Note
Since we can't get any feedback from the servo, this only works if the
acceleration (see setAcceleration()
) is set smaller or equal to the
maximum acceleration of the servo. Otherwise the servo will lag behind the
control value and the callback will be triggered too early.
Virtual functions don't communicate with the device itself, but operate only on the API bindings device object. They can be called without the corresponding IP Connection object being connected.
BrickServo.
getAPIVersion
()¶Returns: |
|
---|
Returns the version of the API definition implemented by this API bindings. This is neither the release version of this API bindings nor does it tell you anything about the represented Brick or Bricklet.
BrickServo.
getResponseExpected
(functionId[, errorCallback])¶Parameters: |
|
---|---|
Returns: |
|
Returns the response expected flag for the function specified by the function ID parameter. It is true if the function is expected to send a response, false otherwise.
For getter functions this is enabled by default and cannot be disabled,
because those functions will always send a response. For callback configuration
functions it is enabled by default too, but can be disabled by
setResponseExpected()
. For setter functions it is disabled by default
and can be enabled.
Enabling the response expected flag for a setter function allows to detect timeouts and other error conditions calls of this setter as well. The device will then send a response for this purpose. If this flag is disabled for a setter function then no response is sent and errors are silently ignored, because they cannot be detected.
The following constants are available for this function:
For function_id:
BrickServo.
setResponseExpected
(functionId, responseExpected[, errorCallback])¶Parameters: |
|
---|---|
Returns: |
|
Changes the response expected flag of the function specified by the function ID parameter. This flag can only be changed for setter (default value: false) and callback configuration functions (default value: true). For getter functions it is always enabled.
Enabling the response expected flag for a setter function allows to detect timeouts and other error conditions calls of this setter as well. The device will then send a response for this purpose. If this flag is disabled for a setter function then no response is sent and errors are silently ignored, because they cannot be detected.
The following constants are available for this function:
For function_id:
BrickServo.
setResponseExpectedAll
(responseExpected)¶Parameters: |
|
---|---|
Returns: |
|
Changes the response expected flag for all setter and callback configuration functions of this device at once.
Internal functions are used for maintenance tasks such as flashing a new firmware of changing the UID of a Bricklet. These task should be performed using Brick Viewer instead of using the internal functions directly.
BrickServo.
getProtocol1BrickletName
(port[, returnCallback][, errorCallback])¶Parameters: |
|
---|---|
Callback Parameters: |
|
Returns: |
|
Returns the firmware and protocol version and the name of the Bricklet for a given port.
This functions sole purpose is to allow automatic flashing of v1.x.y Bricklet plugins.
BrickServo.
writeBrickletPlugin
(port, offset, chunk[, returnCallback][, errorCallback])¶Parameters: |
|
---|---|
Callback Parameters: |
|
Returns: |
|
Writes 32 bytes of firmware to the bricklet attached at the given port. The bytes are written to the position offset * 32.
This function is used by Brick Viewer during flashing. It should not be necessary to call it in a normal user program.
BrickServo.
readBrickletPlugin
(port, offset[, returnCallback][, errorCallback])¶Parameters: |
|
---|---|
Callback Parameters: |
|
Returns: |
|
Reads 32 bytes of firmware from the bricklet attached at the given port. The bytes are read starting at the position offset * 32.
This function is used by Brick Viewer during flashing. It should not be necessary to call it in a normal user program.
BrickServo.
DEVICE_IDENTIFIER
¶This constant is used to identify a Servo Brick.
The getIdentity()
function and the
IPConnection.CALLBACK_ENUMERATE
callback of the IP Connection have a device_identifier
parameter to specify
the Brick's or Bricklet's type.
BrickServo.
DEVICE_DISPLAY_NAME
¶This constant represents the human readable name of a Servo Brick.