MATLAB/Octave - Accelerometer Bricklet 2.0

This is the description of the MATLAB/Octave API bindings for the Accelerometer Bricklet 2.0. General information and technical specifications for the Accelerometer Bricklet 2.0 are summarized in its hardware description.

An installation guide for the MATLAB/Octave API bindings is part of their general description.

Examples

The example code below is Public Domain (CC0 1.0).

Simple (MATLAB)

Download (matlab_example_simple.m)

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
function matlab_example_simple()
    import com.tinkerforge.IPConnection;
    import com.tinkerforge.BrickletAccelerometerV2;

    HOST = 'localhost';
    PORT = 4223;
    UID = 'XYZ'; % Change XYZ to the UID of your Accelerometer Bricklet 2.0

    ipcon = IPConnection(); % Create IP connection
    a = handle(BrickletAccelerometerV2(UID, ipcon), 'CallbackProperties'); % Create device object

    ipcon.connect(HOST, PORT); % Connect to brickd
    % Don't use device before ipcon is connected

    % Get current acceleration
    acceleration = a.getAcceleration();

    fprintf('Acceleration [X]: %g g\n', acceleration.x/10000.0);
    fprintf('Acceleration [Y]: %g g\n', acceleration.y/10000.0);
    fprintf('Acceleration [Z]: %g g\n', acceleration.z/10000.0);

    input('Press key to exit\n', 's');
    ipcon.disconnect();
end

Callback (MATLAB)

Download (matlab_example_callback.m)

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
function matlab_example_callback()
    import com.tinkerforge.IPConnection;
    import com.tinkerforge.BrickletAccelerometerV2;

    HOST = 'localhost';
    PORT = 4223;
    UID = 'XYZ'; % Change XYZ to the UID of your Accelerometer Bricklet 2.0

    ipcon = IPConnection(); % Create IP connection
    a = handle(BrickletAccelerometerV2(UID, ipcon), 'CallbackProperties'); % Create device object

    ipcon.connect(HOST, PORT); % Connect to brickd
    % Don't use device before ipcon is connected

    % Register acceleration callback to function cb_acceleration
    set(a, 'AccelerationCallback', @(h, e) cb_acceleration(e));

    % Set period for acceleration callback to 1s (1000ms)
    a.setAccelerationCallbackConfiguration(1000, false);

    input('Press key to exit\n', 's');
    ipcon.disconnect();
end

% Callback function for acceleration callback
function cb_acceleration(e)
    fprintf('Acceleration [X]: %g g\n', e.x/10000.0);
    fprintf('Acceleration [Y]: %g g\n', e.y/10000.0);
    fprintf('Acceleration [Z]: %g g\n', e.z/10000.0);
    fprintf('\n');
end

Pitch Roll Callback (MATLAB)

Download (matlab_example_pitch_roll_callback.m)

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
function matlab_example_pitch_roll_callback()
    import com.tinkerforge.IPConnection;
    import com.tinkerforge.BrickletAccelerometerV2;

    HOST = 'localhost';
    PORT = 4223;
    UID = 'XYZ'; % Change XYZ to the UID of your Accelerometer Bricklet 2.0

    ipcon = IPConnection(); % Create IP connection
    a = handle(BrickletAccelerometerV2(UID, ipcon), 'CallbackProperties'); % Create device object

    ipcon.connect(HOST, PORT); % Connect to brickd
    % Don't use device before ipcon is connected

    % Register acceleration callback to function cb_acceleration
    set(a, 'AccelerationCallback', @(h, e) cb_acceleration(e));

    % Set period for acceleration callback to 100ms
    a.setAccelerationCallbackConfiguration(100, false);

    input('Press key to exit\n', 's');
    ipcon.disconnect();
end

% Callback function for acceleration callback
function cb_acceleration(e)
    x = e.x/10000.0;
    y = e.y/10000.0;
    z = e.z/10000.0;
    pitch = round(atan(x / sqrt(y * y + z * z)) * 180 / pi);
    roll = round(atan(y / sqrt(x * x + z * z)) * 180 / pi);

    fprintf('Pitch: %g°\n', pitch);
    fprintf('Roll: %g°\n', roll);
    fprintf('\n');
end

Continuous Callback (MATLAB)

Download (matlab_example_continuous_callback.m)

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
function matlab_example_continuous_callback()
    import com.tinkerforge.IPConnection;
    import com.tinkerforge.BrickletAccelerometerV2;

    HOST = 'localhost';
    PORT = 4223;
    UID = 'XYZ'; % Change XYZ to the UID of your Accelerometer Bricklet 2.0

    ipcon = IPConnection(); % Create IP connection
    a = handle(BrickletAccelerometerV2(UID, ipcon), 'CallbackProperties'); % Create device object

    ipcon.connect(HOST, PORT); % Connect to brickd
    % Don't use device before ipcon is connected

    % Register 16-bit continuous acceleration callback to function cb_continuous_acceleration
    set(a, 'ContinuousAcceleration16BitCallback', @(h, e) cb_continuous_acceleration(e));

    % Configure to get X, Y and Z axis continuous acceleration with 16-bit resolution
    a.setContinuousAccelerationConfiguration(true, true, true, BrickletAccelerometerV2.RESOLUTION_16BIT);

    input('Press key to exit\n', 's');
    ipcon.disconnect();
end

% Callback function for continuous acceleration callback
function cb_continuous_acceleration(e)
    data_all = [];
    data_axis = [];
    
    for i = 1:length(e.acceleration)
        if mod(i, 3) ~= 0
            data_axis = [data_axis double(e.acceleration(i)) / 10000.0];
        else
            data_axis = [data_axis double(e.acceleration(i)) / 10000.0];
            data_all = [data_all; data_axis];
            data_axis = [];
        end
    end

    for i = 1:length(data_all)
        data_axis = data_all(i,:);

        for j = 1:length(data_axis)
            if j == 1
                fprintf('Acceleration [X]: %g g\n', data_axis(j));
            elseif j == 2
                fprintf('Acceleration [Y]: %g g\n', data_axis(j));
            else
                fprintf('Acceleration [Z]: %g g\n\n', data_axis(j));
            end
        end
    end

    fprintf('\n');
end

Simple (Octave)

Download (octave_example_simple.m)

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
function octave_example_simple()
    more off;

    HOST = "localhost";
    PORT = 4223;
    UID = "XYZ"; % Change XYZ to the UID of your Accelerometer Bricklet 2.0

    ipcon = javaObject("com.tinkerforge.IPConnection"); % Create IP connection
    a = javaObject("com.tinkerforge.BrickletAccelerometerV2", UID, ipcon); % Create device object

    ipcon.connect(HOST, PORT); % Connect to brickd
    % Don't use device before ipcon is connected

    % Get current acceleration
    acceleration = a.getAcceleration();

    fprintf("Acceleration [X]: %g g\n", acceleration.x/10000.0);
    fprintf("Acceleration [Y]: %g g\n", acceleration.y/10000.0);
    fprintf("Acceleration [Z]: %g g\n", acceleration.z/10000.0);

    input("Press key to exit\n", "s");
    ipcon.disconnect();
end

Callback (Octave)

Download (octave_example_callback.m)

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
function octave_example_callback()
    more off;

    HOST = "localhost";
    PORT = 4223;
    UID = "XYZ"; % Change XYZ to the UID of your Accelerometer Bricklet 2.0

    ipcon = javaObject("com.tinkerforge.IPConnection"); % Create IP connection
    a = javaObject("com.tinkerforge.BrickletAccelerometerV2", UID, ipcon); % Create device object

    ipcon.connect(HOST, PORT); % Connect to brickd
    % Don't use device before ipcon is connected

    % Register acceleration callback to function cb_acceleration
    a.addAccelerationCallback(@cb_acceleration);

    % Set period for acceleration callback to 1s (1000ms)
    a.setAccelerationCallbackConfiguration(1000, false);

    input("Press key to exit\n", "s");
    ipcon.disconnect();
end

% Callback function for acceleration callback
function cb_acceleration(e)
    fprintf("Acceleration [X]: %g g\n", e.x/10000.0);
    fprintf("Acceleration [Y]: %g g\n", e.y/10000.0);
    fprintf("Acceleration [Z]: %g g\n", e.z/10000.0);
    fprintf("\n");
end

Pitch Roll Callback (Octave)

Download (octave_example_pitch_roll_callback.m)

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
function octave_example_pitch_roll_callback()
    more off;

    HOST = "localhost";
    PORT = 4223;
    UID = "XYZ"; % Change XYZ to the UID of your Accelerometer Bricklet 2.0

    ipcon = javaObject("com.tinkerforge.IPConnection"); % Create IP connection
    a = javaObject("com.tinkerforge.BrickletAccelerometerV2", UID, ipcon); % Create device object

    ipcon.connect(HOST, PORT); % Connect to brickd
    % Don't use device before ipcon is connected

    % Register acceleration callback to function cb_acceleration
    a.addAccelerationCallback(@cb_acceleration);

    % Set period for acceleration callback to 100ms
    a.setAccelerationCallbackConfiguration(100, false);

    input("Press key to exit\n", "s");
    ipcon.disconnect();
end

% Callback function for acceleration callback
function cb_acceleration(e)
    x = e.x/10000.0;
    y = e.y/10000.0;
    z = e.z/10000.0;
    pitch = round(atan(x / sqrt(y * y + z * z)) * 180 / pi);
    roll = round(atan(y / sqrt(x * x + z * z)) * 180 / pi);

    fprintf("Pitch: %g°\n", pitch);
    fprintf("Roll: %g°\n", roll);
    fprintf("\n");
end

Continuous Callback (Octave)

Download (octave_example_continuous_callback.m)

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
function octave_example_continuous_callback()
    more off;

    HOST = "localhost";
    PORT = 4223;
    UID = "XYZ"; % Change XYZ to the UID of your Accelerometer Bricklet 2.0

    ipcon = javaObject("com.tinkerforge.IPConnection"); % Create IP connection
    a = javaObject("com.tinkerforge.BrickletAccelerometerV2", UID, ipcon); % Create device object

    ipcon.connect(HOST, PORT); % Connect to brickd
    % Don't use device before ipcon is connected

    % Register 16-bit continuous acceleration callback to function cb_continuous_acceleration
    a.addContinuousAcceleration16BitCallback(@cb_continuous_acceleration);

    % Configure to get X, Y and Z axis continuous acceleration with 16-bit resolution
    a.setContinuousAccelerationConfiguration(true, true, true, a.RESOLUTION_16BIT);

    input("Press key to exit\n", "s");
    ipcon.disconnect();
end

% Callback function for continuous acceleration callback
function cb_continuous_acceleration(e)
    data_all = [];
    data_axis = [];
    acceleration = [e.acceleration];

    for i = 1:length(e.acceleration)
        if mod(i, 3) ~= 0
            data_axis = [data_axis double(acceleration(i)) / 10000.0];
        else
            data_axis = [data_axis double(acceleration(i)) / 10000.0];
            data_all = [data_all; data_axis];
            data_axis = [];
        end
    end
    
    for i = 1:length(data_all)
        data_axis = data_all(i,:);

        for j = 1:length(data_axis)
            if j == 1
                fprintf("Acceleration [X]: %g g\n", data_axis(j));
            elseif j == 2
                fprintf("Acceleration [Y]: %g g\n", data_axis(j));
            else
                fprintf("Acceleration [Z]: %g g\n\n", data_axis(j));
            end
        end
    end

    fprintf("\n");
end

octave_example_continuous_callback();

API

Generally, every method of the MATLAB bindings that returns a value can throw a TimeoutException. This exception gets thrown if the device did not respond. If a cable based connection is used, it is unlikely that this exception gets thrown (assuming nobody unplugs the device). However, if a wireless connection is used, timeouts will occur if the distance to the device gets too big.

Beside the TimeoutException there is also a NotConnectedException that is thrown if a method needs to communicate with the device while the IP Connection is not connected.

Since the MATLAB bindings are based on Java and Java does not support multiple return values and return by reference is not possible for primitive types, we use small classes that only consist of member variables. The member variables of the returned objects are described in the corresponding method descriptions.

The package for all Brick/Bricklet bindings and the IP Connection is com.tinkerforge.*

All methods listed below are thread-safe.

Basic Functions

class BrickletAccelerometerV2(String uid, IPConnection ipcon)
Parameters:
  • uid – Type: String
  • ipcon – Type: IPConnection
Returns:
  • accelerometerV2 – Type: BrickletAccelerometerV2

Creates an object with the unique device ID uid.

In MATLAB:

import com.tinkerforge.BrickletAccelerometerV2;

accelerometerV2 = BrickletAccelerometerV2('YOUR_DEVICE_UID', ipcon);

In Octave:

accelerometerV2 = java_new("com.tinkerforge.BrickletAccelerometerV2", "YOUR_DEVICE_UID", ipcon);

This object can then be used after the IP Connection is connected.

BrickletAccelerometerV2.Acceleration BrickletAccelerometerV2.getAcceleration()
Return Object:
  • x – Type: int, Unit: 1/10000 gₙ, Range: ?
  • y – Type: int, Unit: 1/10000 gₙ, Range: ?
  • z – Type: int, Unit: 1/10000 gₙ, Range: ?

Returns the acceleration in x, y and z direction. The values are given in gₙ/10000 (1gₙ = 9.80665m/s²). The range is configured with setConfiguration().

If you want to get the acceleration periodically, it is recommended to use the AccelerationCallback callback and set the period with setAccelerationCallbackConfiguration().

void BrickletAccelerometerV2.setConfiguration(int dataRate, int fullScale)
Parameters:
  • dataRate – Type: int, Range: See constants, Default: 7
  • fullScale – Type: int, Range: See constants, Default: 0

Configures the data rate and full scale range. Possible values are:

  • Data rate of 0.781Hz to 25600Hz.
  • Full scale range of ±2g up to ±8g.

Decreasing data rate or full scale range will also decrease the noise on the data.

The following constants are available for this function:

For dataRate:

  • BrickletAccelerometerV2.DATA_RATE_0_781HZ = 0
  • BrickletAccelerometerV2.DATA_RATE_1_563HZ = 1
  • BrickletAccelerometerV2.DATA_RATE_3_125HZ = 2
  • BrickletAccelerometerV2.DATA_RATE_6_2512HZ = 3
  • BrickletAccelerometerV2.DATA_RATE_12_5HZ = 4
  • BrickletAccelerometerV2.DATA_RATE_25HZ = 5
  • BrickletAccelerometerV2.DATA_RATE_50HZ = 6
  • BrickletAccelerometerV2.DATA_RATE_100HZ = 7
  • BrickletAccelerometerV2.DATA_RATE_200HZ = 8
  • BrickletAccelerometerV2.DATA_RATE_400HZ = 9
  • BrickletAccelerometerV2.DATA_RATE_800HZ = 10
  • BrickletAccelerometerV2.DATA_RATE_1600HZ = 11
  • BrickletAccelerometerV2.DATA_RATE_3200HZ = 12
  • BrickletAccelerometerV2.DATA_RATE_6400HZ = 13
  • BrickletAccelerometerV2.DATA_RATE_12800HZ = 14
  • BrickletAccelerometerV2.DATA_RATE_25600HZ = 15

For fullScale:

  • BrickletAccelerometerV2.FULL_SCALE_2G = 0
  • BrickletAccelerometerV2.FULL_SCALE_4G = 1
  • BrickletAccelerometerV2.FULL_SCALE_8G = 2
BrickletAccelerometerV2.Configuration BrickletAccelerometerV2.getConfiguration()
Return Object:
  • dataRate – Type: int, Range: See constants, Default: 7
  • fullScale – Type: int, Range: See constants, Default: 0

Returns the configuration as set by setConfiguration().

The following constants are available for this function:

For dataRate:

  • BrickletAccelerometerV2.DATA_RATE_0_781HZ = 0
  • BrickletAccelerometerV2.DATA_RATE_1_563HZ = 1
  • BrickletAccelerometerV2.DATA_RATE_3_125HZ = 2
  • BrickletAccelerometerV2.DATA_RATE_6_2512HZ = 3
  • BrickletAccelerometerV2.DATA_RATE_12_5HZ = 4
  • BrickletAccelerometerV2.DATA_RATE_25HZ = 5
  • BrickletAccelerometerV2.DATA_RATE_50HZ = 6
  • BrickletAccelerometerV2.DATA_RATE_100HZ = 7
  • BrickletAccelerometerV2.DATA_RATE_200HZ = 8
  • BrickletAccelerometerV2.DATA_RATE_400HZ = 9
  • BrickletAccelerometerV2.DATA_RATE_800HZ = 10
  • BrickletAccelerometerV2.DATA_RATE_1600HZ = 11
  • BrickletAccelerometerV2.DATA_RATE_3200HZ = 12
  • BrickletAccelerometerV2.DATA_RATE_6400HZ = 13
  • BrickletAccelerometerV2.DATA_RATE_12800HZ = 14
  • BrickletAccelerometerV2.DATA_RATE_25600HZ = 15

For fullScale:

  • BrickletAccelerometerV2.FULL_SCALE_2G = 0
  • BrickletAccelerometerV2.FULL_SCALE_4G = 1
  • BrickletAccelerometerV2.FULL_SCALE_8G = 2
void BrickletAccelerometerV2.setInfoLEDConfig(int config)
Parameters:
  • config – Type: int, Range: See constants, Default: 0

Configures the info LED (marked as "Force" on the Bricklet) to be either turned off, turned on, or blink in heartbeat mode.

The following constants are available for this function:

For config:

  • BrickletAccelerometerV2.INFO_LED_CONFIG_OFF = 0
  • BrickletAccelerometerV2.INFO_LED_CONFIG_ON = 1
  • BrickletAccelerometerV2.INFO_LED_CONFIG_SHOW_HEARTBEAT = 2
int BrickletAccelerometerV2.getInfoLEDConfig()
Returns:
  • config – Type: int, Range: See constants, Default: 0

Returns the LED configuration as set by setInfoLEDConfig()

The following constants are available for this function:

For config:

  • BrickletAccelerometerV2.INFO_LED_CONFIG_OFF = 0
  • BrickletAccelerometerV2.INFO_LED_CONFIG_ON = 1
  • BrickletAccelerometerV2.INFO_LED_CONFIG_SHOW_HEARTBEAT = 2

Advanced Functions

void BrickletAccelerometerV2.setFilterConfiguration(int iirBypass, int lowPassFilter)
Parameters:
  • iirBypass – Type: int, Range: See constants, Default: 0
  • lowPassFilter – Type: int, Range: See constants, Default: 0

Configures IIR Bypass filter mode and low pass filter roll off corner frequency.

The filter can be applied or bypassed and the corner frequency can be half or a ninth of the output data rate.

Accelerometer filter

The following constants are available for this function:

For iirBypass:

  • BrickletAccelerometerV2.IIR_BYPASS_APPLIED = 0
  • BrickletAccelerometerV2.IIR_BYPASS_BYPASSED = 1

For lowPassFilter:

  • BrickletAccelerometerV2.LOW_PASS_FILTER_NINTH = 0
  • BrickletAccelerometerV2.LOW_PASS_FILTER_HALF = 1

New in version 2.0.2 (Plugin).

BrickletAccelerometerV2.FilterConfiguration BrickletAccelerometerV2.getFilterConfiguration()
Return Object:
  • iirBypass – Type: int, Range: See constants, Default: 0
  • lowPassFilter – Type: int, Range: See constants, Default: 0

Returns the configuration as set by setFilterConfiguration().

The following constants are available for this function:

For iirBypass:

  • BrickletAccelerometerV2.IIR_BYPASS_APPLIED = 0
  • BrickletAccelerometerV2.IIR_BYPASS_BYPASSED = 1

For lowPassFilter:

  • BrickletAccelerometerV2.LOW_PASS_FILTER_NINTH = 0
  • BrickletAccelerometerV2.LOW_PASS_FILTER_HALF = 1

New in version 2.0.2 (Plugin).

BrickletAccelerometerV2.SPITFPErrorCount BrickletAccelerometerV2.getSPITFPErrorCount()
Return Object:
  • errorCountAckChecksum – Type: long, Range: [0 to 232 - 1]
  • errorCountMessageChecksum – Type: long, Range: [0 to 232 - 1]
  • errorCountFrame – Type: long, Range: [0 to 232 - 1]
  • errorCountOverflow – Type: long, Range: [0 to 232 - 1]

Returns the error count for the communication between Brick and Bricklet.

The errors are divided into

  • ACK checksum errors,
  • message checksum errors,
  • framing errors and
  • overflow errors.

The errors counts are for errors that occur on the Bricklet side. All Bricks have a similar function that returns the errors on the Brick side.

void BrickletAccelerometerV2.setStatusLEDConfig(int config)
Parameters:
  • config – Type: int, Range: See constants, Default: 3

Sets the status LED configuration. By default the LED shows communication traffic between Brick and Bricklet, it flickers once for every 10 received data packets.

You can also turn the LED permanently on/off or show a heartbeat.

If the Bricklet is in bootloader mode, the LED is will show heartbeat by default.

The following constants are available for this function:

For config:

  • BrickletAccelerometerV2.STATUS_LED_CONFIG_OFF = 0
  • BrickletAccelerometerV2.STATUS_LED_CONFIG_ON = 1
  • BrickletAccelerometerV2.STATUS_LED_CONFIG_SHOW_HEARTBEAT = 2
  • BrickletAccelerometerV2.STATUS_LED_CONFIG_SHOW_STATUS = 3
int BrickletAccelerometerV2.getStatusLEDConfig()
Returns:
  • config – Type: int, Range: See constants, Default: 3

Returns the configuration as set by setStatusLEDConfig()

The following constants are available for this function:

For config:

  • BrickletAccelerometerV2.STATUS_LED_CONFIG_OFF = 0
  • BrickletAccelerometerV2.STATUS_LED_CONFIG_ON = 1
  • BrickletAccelerometerV2.STATUS_LED_CONFIG_SHOW_HEARTBEAT = 2
  • BrickletAccelerometerV2.STATUS_LED_CONFIG_SHOW_STATUS = 3
int BrickletAccelerometerV2.getChipTemperature()
Returns:
  • temperature – Type: int, Unit: 1 °C, Range: [-215 to 215 - 1]

Returns the temperature as measured inside the microcontroller. The value returned is not the ambient temperature!

The temperature is only proportional to the real temperature and it has bad accuracy. Practically it is only useful as an indicator for temperature changes.

void BrickletAccelerometerV2.reset()

Calling this function will reset the Bricklet. All configurations will be lost.

After a reset you have to create new device objects, calling functions on the existing ones will result in undefined behavior!

BrickletAccelerometerV2.Identity BrickletAccelerometerV2.getIdentity()
Return Object:
  • uid – Type: String, Length: up to 8
  • connectedUid – Type: String, Length: up to 8
  • position – Type: char, Range: ['a' to 'h', 'z']
  • hardwareVersion – Type: short[], Length: 3
    • 1: major – Type: short, Range: [0 to 255]
    • 2: minor – Type: short, Range: [0 to 255]
    • 3: revision – Type: short, Range: [0 to 255]
  • firmwareVersion – Type: short[], Length: 3
    • 1: major – Type: short, Range: [0 to 255]
    • 2: minor – Type: short, Range: [0 to 255]
    • 3: revision – Type: short, Range: [0 to 255]
  • deviceIdentifier – Type: int, Range: [0 to 216 - 1]

Returns the UID, the UID where the Bricklet is connected to, the position, the hardware and firmware version as well as the device identifier.

The position can be 'a', 'b', 'c', 'd', 'e', 'f', 'g' or 'h' (Bricklet Port). A Bricklet connected to an Isolator Bricklet is always at position 'z'.

The device identifier numbers can be found here. There is also a constant for the device identifier of this Bricklet.

Callback Configuration Functions

void BrickletAccelerometerV2.setAccelerationCallbackConfiguration(long period, boolean valueHasToChange)
Parameters:
  • period – Type: long, Unit: 1 ms, Range: [0 to 232 - 1], Default: 0
  • valueHasToChange – Type: boolean, Default: false

The period is the period with which the AccelerationCallback callback is triggered periodically. A value of 0 turns the callback off.

If the value has to change-parameter is set to true, the callback is only triggered after the value has changed. If the value didn't change within the period, the callback is triggered immediately on change.

If it is set to false, the callback is continuously triggered with the period, independent of the value.

If this callback is enabled, the ContinuousAcceleration16BitCallback callback and ContinuousAcceleration8BitCallback callback will automatically be disabled.

BrickletAccelerometerV2.AccelerationCallbackConfiguration BrickletAccelerometerV2.getAccelerationCallbackConfiguration()
Return Object:
  • period – Type: long, Unit: 1 ms, Range: [0 to 232 - 1], Default: 0
  • valueHasToChange – Type: boolean, Default: false

Returns the callback configuration as set by setAccelerationCallbackConfiguration().

void BrickletAccelerometerV2.setContinuousAccelerationConfiguration(boolean enableX, boolean enableY, boolean enableZ, int resolution)
Parameters:
  • enableX – Type: boolean, Default: false
  • enableY – Type: boolean, Default: false
  • enableZ – Type: boolean, Default: false
  • resolution – Type: int, Range: See constants, Default: 0

For high throughput of acceleration data (> 1000Hz) you have to use the ContinuousAcceleration16BitCallback or ContinuousAcceleration8BitCallback callbacks.

You can enable the callback for each axis (x, y, z) individually and choose a resolution of 8 bit or 16 bit.

If at least one of the axis is enabled and the resolution is set to 8 bit, the ContinuousAcceleration8BitCallback callback is activated. If at least one of the axis is enabled and the resolution is set to 16 bit, the ContinuousAcceleration16BitCallback callback is activated.

The returned values are raw ADC data. If you want to put this data into a FFT to determine the occurrences of specific frequencies we recommend that you use the data as is. It has all of the ADC noise in it. This noise looks like pure noise at first glance, but it might still have some frequnecy information in it that can be utilized by the FFT.

Otherwise you have to use the following formulas that depend on the configured resolution (8/16 bit) and the full scale range (see setConfiguration()) to calculate the data in gₙ/10000 (same unit that is returned by getAcceleration()):

  • 16 bit, full scale 2g: acceleration = value * 625 / 1024
  • 16 bit, full scale 4g: acceleration = value * 1250 / 1024
  • 16 bit, full scale 8g: acceleration = value * 2500 / 1024

If a resolution of 8 bit is used, only the 8 most significant bits will be transferred, so you can use the following formulas:

  • 8 bit, full scale 2g: acceleration = value * 256 * 625 / 1024
  • 8 bit, full scale 4g: acceleration = value * 256 * 1250 / 1024
  • 8 bit, full scale 8g: acceleration = value * 256 * 2500 / 1024

If no axis is enabled, both callbacks are disabled. If one of the continuous callbacks is enabled, the AccelerationCallback callback is disabled.

The maximum throughput depends on the exact configuration:

Number of axis enabled Throughput 8 bit Throughout 16 bit
1 25600Hz 25600Hz
2 25600Hz 15000Hz
3 20000Hz 10000Hz

The following constants are available for this function:

For resolution:

  • BrickletAccelerometerV2.RESOLUTION_8BIT = 0
  • BrickletAccelerometerV2.RESOLUTION_16BIT = 1
BrickletAccelerometerV2.ContinuousAccelerationConfiguration BrickletAccelerometerV2.getContinuousAccelerationConfiguration()
Return Object:
  • enableX – Type: boolean, Default: false
  • enableY – Type: boolean, Default: false
  • enableZ – Type: boolean, Default: false
  • resolution – Type: int, Range: See constants, Default: 0

Returns the continuous acceleration configuration as set by setContinuousAccelerationConfiguration().

The following constants are available for this function:

For resolution:

  • BrickletAccelerometerV2.RESOLUTION_8BIT = 0
  • BrickletAccelerometerV2.RESOLUTION_16BIT = 1

Callbacks

Callbacks can be registered to receive time critical or recurring data from the device. The registration is done with "set" function of MATLAB. The parameters consist of the IP Connection object, the callback name and the callback function. For example, it looks like this in MATLAB:

function my_callback(e)
    fprintf('Parameter: %s\n', e.param);
end

set(device, 'ExampleCallback', @(h, e) my_callback(e));

Due to a difference in the Octave Java support the "set" function cannot be used in Octave. The registration is done with "add*Callback" functions of the device object. It looks like this in Octave:

function my_callback(e)
    fprintf("Parameter: %s\n", e.param);
end

device.addExampleCallback(@my_callback);

It is possible to add several callbacks and to remove them with the corresponding "remove*Callback" function.

The parameters of the callback are passed to the callback function as fields of the structure e, which is derived from the java.util.EventObject class. The available callback names with corresponding structure fields are described below.

Note

Using callbacks for recurring events is always preferred compared to using getters. It will use less USB bandwidth and the latency will be a lot better, since there is no round trip time.

callback BrickletAccelerometerV2.AccelerationCallback
Event Object:
  • x – Type: int, Unit: 1/10000 gₙ, Range: ?
  • y – Type: int, Unit: 1/10000 gₙ, Range: ?
  • z – Type: int, Unit: 1/10000 gₙ, Range: ?

This callback is triggered periodically according to the configuration set by setAccelerationCallbackConfiguration().

The parameters are the same as getAcceleration().

In MATLAB the set() function can be used to register a callback function to this callback.

In Octave a callback function can be added to this callback using the addAccelerationCallback() function. An added callback function can be removed with the removeAccelerationCallback() function.

callback BrickletAccelerometerV2.ContinuousAcceleration16BitCallback
Event Object:
  • acceleration – Type: int[], Length: 30, Unit: ? gₙ, Range: ?

Returns 30 acceleration values with 16 bit resolution. The data rate can be configured with setConfiguration() and this callback can be enabled with setContinuousAccelerationConfiguration().

The returned values are raw ADC data. If you want to put this data into a FFT to determine the occurrences of specific frequencies we recommend that you use the data as is. It has all of the ADC noise in it. This noise looks like pure noise at first glance, but it might still have some frequnecy information in it that can be utilized by the FFT.

Otherwise you have to use the following formulas that depend on the full scale range (see setConfiguration()) to calculate the data in gₙ/10000 (same unit that is returned by getAcceleration()):

  • Full scale 2g: acceleration = value * 625 / 1024
  • Full scale 4g: acceleration = value * 1250 / 1024
  • Full scale 8g: acceleration = value * 2500 / 1024

The data is formated in the sequence "x, y, z, x, y, z, ..." depending on the enabled axis. Examples:

  • x, y, z enabled: "x, y, z, ..." 10x repeated
  • x, z enabled: "x, z, ..." 15x repeated
  • y enabled: "y, ..." 30x repeated

In MATLAB the set() function can be used to register a callback function to this callback.

In Octave a callback function can be added to this callback using the addContinuousAcceleration16BitCallback() function. An added callback function can be removed with the removeContinuousAcceleration16BitCallback() function.

callback BrickletAccelerometerV2.ContinuousAcceleration8BitCallback
Event Object:
  • acceleration – Type: int[], Length: 60, Unit: ? gₙ, Range: ?

Returns 60 acceleration values with 8 bit resolution. The data rate can be configured with setConfiguration() and this callback can be enabled with setContinuousAccelerationConfiguration().

The returned values are raw ADC data. If you want to put this data into a FFT to determine the occurrences of specific frequencies we recommend that you use the data as is. It has all of the ADC noise in it. This noise looks like pure noise at first glance, but it might still have some frequnecy information in it that can be utilized by the FFT.

Otherwise you have to use the following formulas that depend on the full scale range (see setConfiguration()) to calculate the data in gₙ/10000 (same unit that is returned by getAcceleration()):

  • Full scale 2g: acceleration = value * 256 * 625 / 1024
  • Full scale 4g: acceleration = value * 256 * 1250 / 1024
  • Full scale 8g: acceleration = value * 256 * 2500 / 1024

The data is formated in the sequence "x, y, z, x, y, z, ..." depending on the enabled axis. Examples:

  • x, y, z enabled: "x, y, z, ..." 20x repeated
  • x, z enabled: "x, z, ..." 30x repeated
  • y enabled: "y, ..." 60x repeated

In MATLAB the set() function can be used to register a callback function to this callback.

In Octave a callback function can be added to this callback using the addContinuousAcceleration8BitCallback() function. An added callback function can be removed with the removeContinuousAcceleration8BitCallback() function.

Virtual Functions

Virtual functions don't communicate with the device itself, but operate only on the API bindings device object. They can be called without the corresponding IP Connection object being connected.

short[] BrickletAccelerometerV2.getAPIVersion()
Return Object:
  • apiVersion – Type: short[], Length: 3
    • 1: major – Type: short, Range: [0 to 255]
    • 2: minor – Type: short, Range: [0 to 255]
    • 3: revision – Type: short, Range: [0 to 255]

Returns the version of the API definition implemented by this API bindings. This is neither the release version of this API bindings nor does it tell you anything about the represented Brick or Bricklet.

boolean BrickletAccelerometerV2.getResponseExpected(byte functionId)
Parameters:
  • functionId – Type: byte, Range: See constants
Returns:
  • responseExpected – Type: boolean

Returns the response expected flag for the function specified by the function ID parameter. It is true if the function is expected to send a response, false otherwise.

For getter functions this is enabled by default and cannot be disabled, because those functions will always send a response. For callback configuration functions it is enabled by default too, but can be disabled by setResponseExpected(). For setter functions it is disabled by default and can be enabled.

Enabling the response expected flag for a setter function allows to detect timeouts and other error conditions calls of this setter as well. The device will then send a response for this purpose. If this flag is disabled for a setter function then no response is sent and errors are silently ignored, because they cannot be detected.

The following constants are available for this function:

For functionId:

  • BrickletAccelerometerV2.FUNCTION_SET_CONFIGURATION = 2
  • BrickletAccelerometerV2.FUNCTION_SET_ACCELERATION_CALLBACK_CONFIGURATION = 4
  • BrickletAccelerometerV2.FUNCTION_SET_INFO_LED_CONFIG = 6
  • BrickletAccelerometerV2.FUNCTION_SET_CONTINUOUS_ACCELERATION_CONFIGURATION = 9
  • BrickletAccelerometerV2.FUNCTION_SET_FILTER_CONFIGURATION = 13
  • BrickletAccelerometerV2.FUNCTION_SET_WRITE_FIRMWARE_POINTER = 237
  • BrickletAccelerometerV2.FUNCTION_SET_STATUS_LED_CONFIG = 239
  • BrickletAccelerometerV2.FUNCTION_RESET = 243
  • BrickletAccelerometerV2.FUNCTION_WRITE_UID = 248
void BrickletAccelerometerV2.setResponseExpected(byte functionId, boolean responseExpected)
Parameters:
  • functionId – Type: byte, Range: See constants
  • responseExpected – Type: boolean

Changes the response expected flag of the function specified by the function ID parameter. This flag can only be changed for setter (default value: false) and callback configuration functions (default value: true). For getter functions it is always enabled.

Enabling the response expected flag for a setter function allows to detect timeouts and other error conditions calls of this setter as well. The device will then send a response for this purpose. If this flag is disabled for a setter function then no response is sent and errors are silently ignored, because they cannot be detected.

The following constants are available for this function:

For functionId:

  • BrickletAccelerometerV2.FUNCTION_SET_CONFIGURATION = 2
  • BrickletAccelerometerV2.FUNCTION_SET_ACCELERATION_CALLBACK_CONFIGURATION = 4
  • BrickletAccelerometerV2.FUNCTION_SET_INFO_LED_CONFIG = 6
  • BrickletAccelerometerV2.FUNCTION_SET_CONTINUOUS_ACCELERATION_CONFIGURATION = 9
  • BrickletAccelerometerV2.FUNCTION_SET_FILTER_CONFIGURATION = 13
  • BrickletAccelerometerV2.FUNCTION_SET_WRITE_FIRMWARE_POINTER = 237
  • BrickletAccelerometerV2.FUNCTION_SET_STATUS_LED_CONFIG = 239
  • BrickletAccelerometerV2.FUNCTION_RESET = 243
  • BrickletAccelerometerV2.FUNCTION_WRITE_UID = 248
void BrickletAccelerometerV2.setResponseExpectedAll(boolean responseExpected)
Parameters:
  • responseExpected – Type: boolean

Changes the response expected flag for all setter and callback configuration functions of this device at once.

Internal Functions

Internal functions are used for maintenance tasks such as flashing a new firmware of changing the UID of a Bricklet. These task should be performed using Brick Viewer instead of using the internal functions directly.

int BrickletAccelerometerV2.setBootloaderMode(int mode)
Parameters:
  • mode – Type: int, Range: See constants
Returns:
  • status – Type: int, Range: See constants

Sets the bootloader mode and returns the status after the requested mode change was instigated.

You can change from bootloader mode to firmware mode and vice versa. A change from bootloader mode to firmware mode will only take place if the entry function, device identifier and CRC are present and correct.

This function is used by Brick Viewer during flashing. It should not be necessary to call it in a normal user program.

The following constants are available for this function:

For mode:

  • BrickletAccelerometerV2.BOOTLOADER_MODE_BOOTLOADER = 0
  • BrickletAccelerometerV2.BOOTLOADER_MODE_FIRMWARE = 1
  • BrickletAccelerometerV2.BOOTLOADER_MODE_BOOTLOADER_WAIT_FOR_REBOOT = 2
  • BrickletAccelerometerV2.BOOTLOADER_MODE_FIRMWARE_WAIT_FOR_REBOOT = 3
  • BrickletAccelerometerV2.BOOTLOADER_MODE_FIRMWARE_WAIT_FOR_ERASE_AND_REBOOT = 4

For status:

  • BrickletAccelerometerV2.BOOTLOADER_STATUS_OK = 0
  • BrickletAccelerometerV2.BOOTLOADER_STATUS_INVALID_MODE = 1
  • BrickletAccelerometerV2.BOOTLOADER_STATUS_NO_CHANGE = 2
  • BrickletAccelerometerV2.BOOTLOADER_STATUS_ENTRY_FUNCTION_NOT_PRESENT = 3
  • BrickletAccelerometerV2.BOOTLOADER_STATUS_DEVICE_IDENTIFIER_INCORRECT = 4
  • BrickletAccelerometerV2.BOOTLOADER_STATUS_CRC_MISMATCH = 5
int BrickletAccelerometerV2.getBootloaderMode()
Returns:
  • mode – Type: int, Range: See constants

Returns the current bootloader mode, see setBootloaderMode().

The following constants are available for this function:

For mode:

  • BrickletAccelerometerV2.BOOTLOADER_MODE_BOOTLOADER = 0
  • BrickletAccelerometerV2.BOOTLOADER_MODE_FIRMWARE = 1
  • BrickletAccelerometerV2.BOOTLOADER_MODE_BOOTLOADER_WAIT_FOR_REBOOT = 2
  • BrickletAccelerometerV2.BOOTLOADER_MODE_FIRMWARE_WAIT_FOR_REBOOT = 3
  • BrickletAccelerometerV2.BOOTLOADER_MODE_FIRMWARE_WAIT_FOR_ERASE_AND_REBOOT = 4
void BrickletAccelerometerV2.setWriteFirmwarePointer(long pointer)
Parameters:
  • pointer – Type: long, Unit: 1 B, Range: [0 to 232 - 1]

Sets the firmware pointer for writeFirmware(). The pointer has to be increased by chunks of size 64. The data is written to flash every 4 chunks (which equals to one page of size 256).

This function is used by Brick Viewer during flashing. It should not be necessary to call it in a normal user program.

int BrickletAccelerometerV2.writeFirmware(int[] data)
Parameters:
  • data – Type: int[], Length: 64, Range: [0 to 255]
Returns:
  • status – Type: int, Range: [0 to 255]

Writes 64 Bytes of firmware at the position as written by setWriteFirmwarePointer() before. The firmware is written to flash every 4 chunks.

You can only write firmware in bootloader mode.

This function is used by Brick Viewer during flashing. It should not be necessary to call it in a normal user program.

void BrickletAccelerometerV2.writeUID(long uid)
Parameters:
  • uid – Type: long, Range: [0 to 232 - 1]

Writes a new UID into flash. If you want to set a new UID you have to decode the Base58 encoded UID string into an integer first.

We recommend that you use Brick Viewer to change the UID.

long BrickletAccelerometerV2.readUID()
Returns:
  • uid – Type: long, Range: [0 to 232 - 1]

Returns the current UID as an integer. Encode as Base58 to get the usual string version.

Constants

int BrickletAccelerometerV2.DEVICE_IDENTIFIER

This constant is used to identify a Accelerometer Bricklet 2.0.

The getIdentity() function and the IPConnection.EnumerateCallback callback of the IP Connection have a deviceIdentifier parameter to specify the Brick's or Bricklet's type.

String BrickletAccelerometerV2.DEVICE_DISPLAY_NAME

This constant represents the human readable name of a Accelerometer Bricklet 2.0.