This is the description of the MATLAB/Octave API bindings for the Accelerometer Bricklet 2.0. General information and technical specifications for the Accelerometer Bricklet 2.0 are summarized in its hardware description.
An installation guide for the MATLAB/Octave API bindings is part of their general description.
The example code below is Public Domain (CC0 1.0).
Download (matlab_example_simple.m)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 | function matlab_example_simple()
import com.tinkerforge.IPConnection;
import com.tinkerforge.BrickletAccelerometerV2;
HOST = 'localhost';
PORT = 4223;
UID = 'XYZ'; % Change XYZ to the UID of your Accelerometer Bricklet 2.0
ipcon = IPConnection(); % Create IP connection
a = handle(BrickletAccelerometerV2(UID, ipcon), 'CallbackProperties'); % Create device object
ipcon.connect(HOST, PORT); % Connect to brickd
% Don't use device before ipcon is connected
% Get current acceleration
acceleration = a.getAcceleration();
fprintf('Acceleration [X]: %g g\n', acceleration.x/10000.0);
fprintf('Acceleration [Y]: %g g\n', acceleration.y/10000.0);
fprintf('Acceleration [Z]: %g g\n', acceleration.z/10000.0);
input('Press key to exit\n', 's');
ipcon.disconnect();
end
|
Download (matlab_example_callback.m)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 | function matlab_example_callback()
import com.tinkerforge.IPConnection;
import com.tinkerforge.BrickletAccelerometerV2;
HOST = 'localhost';
PORT = 4223;
UID = 'XYZ'; % Change XYZ to the UID of your Accelerometer Bricklet 2.0
ipcon = IPConnection(); % Create IP connection
a = handle(BrickletAccelerometerV2(UID, ipcon), 'CallbackProperties'); % Create device object
ipcon.connect(HOST, PORT); % Connect to brickd
% Don't use device before ipcon is connected
% Register acceleration callback to function cb_acceleration
set(a, 'AccelerationCallback', @(h, e) cb_acceleration(e));
% Set period for acceleration callback to 1s (1000ms)
a.setAccelerationCallbackConfiguration(1000, false);
input('Press key to exit\n', 's');
ipcon.disconnect();
end
% Callback function for acceleration callback
function cb_acceleration(e)
fprintf('Acceleration [X]: %g g\n', e.x/10000.0);
fprintf('Acceleration [Y]: %g g\n', e.y/10000.0);
fprintf('Acceleration [Z]: %g g\n', e.z/10000.0);
fprintf('\n');
end
|
Download (matlab_example_pitch_roll_callback.m)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 | function matlab_example_pitch_roll_callback()
import com.tinkerforge.IPConnection;
import com.tinkerforge.BrickletAccelerometerV2;
HOST = 'localhost';
PORT = 4223;
UID = 'XYZ'; % Change XYZ to the UID of your Accelerometer Bricklet 2.0
ipcon = IPConnection(); % Create IP connection
a = handle(BrickletAccelerometerV2(UID, ipcon), 'CallbackProperties'); % Create device object
ipcon.connect(HOST, PORT); % Connect to brickd
% Don't use device before ipcon is connected
% Register acceleration callback to function cb_acceleration
set(a, 'AccelerationCallback', @(h, e) cb_acceleration(e));
% Set period for acceleration callback to 100ms
a.setAccelerationCallbackConfiguration(100, false);
input('Press key to exit\n', 's');
ipcon.disconnect();
end
% Callback function for acceleration callback
function cb_acceleration(e)
x = e.x/10000.0;
y = e.y/10000.0;
z = e.z/10000.0;
pitch = round(atan(x / sqrt(y * y + z * z)) * 180 / pi);
roll = round(atan(y / sqrt(x * x + z * z)) * 180 / pi);
fprintf('Pitch: %g°\n', pitch);
fprintf('Roll: %g°\n', roll);
fprintf('\n');
end
|
Download (matlab_example_continuous_callback.m)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 | function matlab_example_continuous_callback()
import com.tinkerforge.IPConnection;
import com.tinkerforge.BrickletAccelerometerV2;
HOST = 'localhost';
PORT = 4223;
UID = 'XYZ'; % Change XYZ to the UID of your Accelerometer Bricklet 2.0
ipcon = IPConnection(); % Create IP connection
a = handle(BrickletAccelerometerV2(UID, ipcon), 'CallbackProperties'); % Create device object
ipcon.connect(HOST, PORT); % Connect to brickd
% Don't use device before ipcon is connected
% Register 16-bit continuous acceleration callback to function cb_continuous_acceleration
set(a, 'ContinuousAcceleration16BitCallback', @(h, e) cb_continuous_acceleration(e));
% Configure to get X, Y and Z axis continuous acceleration with 16-bit resolution
a.setContinuousAccelerationConfiguration(true, true, true, BrickletAccelerometerV2.RESOLUTION_16BIT);
input('Press key to exit\n', 's');
ipcon.disconnect();
end
% Callback function for continuous acceleration callback
function cb_continuous_acceleration(e)
data_all = [];
data_axis = [];
for i = 1:length(e.acceleration)
if mod(i, 3) ~= 0
data_axis = [data_axis double(e.acceleration(i)) / 10000.0];
else
data_axis = [data_axis double(e.acceleration(i)) / 10000.0];
data_all = [data_all; data_axis];
data_axis = [];
end
end
for i = 1:length(data_all)
data_axis = data_all(i,:);
for j = 1:length(data_axis)
if j == 1
fprintf('Acceleration [X]: %g g\n', data_axis(j));
elseif j == 2
fprintf('Acceleration [Y]: %g g\n', data_axis(j));
else
fprintf('Acceleration [Z]: %g g\n\n', data_axis(j));
end
end
end
fprintf('\n');
end
|
Download (octave_example_simple.m)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 | function octave_example_simple()
more off;
HOST = "localhost";
PORT = 4223;
UID = "XYZ"; % Change XYZ to the UID of your Accelerometer Bricklet 2.0
ipcon = javaObject("com.tinkerforge.IPConnection"); % Create IP connection
a = javaObject("com.tinkerforge.BrickletAccelerometerV2", UID, ipcon); % Create device object
ipcon.connect(HOST, PORT); % Connect to brickd
% Don't use device before ipcon is connected
% Get current acceleration
acceleration = a.getAcceleration();
fprintf("Acceleration [X]: %g g\n", acceleration.x/10000.0);
fprintf("Acceleration [Y]: %g g\n", acceleration.y/10000.0);
fprintf("Acceleration [Z]: %g g\n", acceleration.z/10000.0);
input("Press key to exit\n", "s");
ipcon.disconnect();
end
|
Download (octave_example_callback.m)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 | function octave_example_callback()
more off;
HOST = "localhost";
PORT = 4223;
UID = "XYZ"; % Change XYZ to the UID of your Accelerometer Bricklet 2.0
ipcon = javaObject("com.tinkerforge.IPConnection"); % Create IP connection
a = javaObject("com.tinkerforge.BrickletAccelerometerV2", UID, ipcon); % Create device object
ipcon.connect(HOST, PORT); % Connect to brickd
% Don't use device before ipcon is connected
% Register acceleration callback to function cb_acceleration
a.addAccelerationCallback(@cb_acceleration);
% Set period for acceleration callback to 1s (1000ms)
a.setAccelerationCallbackConfiguration(1000, false);
input("Press key to exit\n", "s");
ipcon.disconnect();
end
% Callback function for acceleration callback
function cb_acceleration(e)
fprintf("Acceleration [X]: %g g\n", e.x/10000.0);
fprintf("Acceleration [Y]: %g g\n", e.y/10000.0);
fprintf("Acceleration [Z]: %g g\n", e.z/10000.0);
fprintf("\n");
end
|
Download (octave_example_pitch_roll_callback.m)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 | function octave_example_pitch_roll_callback()
more off;
HOST = "localhost";
PORT = 4223;
UID = "XYZ"; % Change XYZ to the UID of your Accelerometer Bricklet 2.0
ipcon = javaObject("com.tinkerforge.IPConnection"); % Create IP connection
a = javaObject("com.tinkerforge.BrickletAccelerometerV2", UID, ipcon); % Create device object
ipcon.connect(HOST, PORT); % Connect to brickd
% Don't use device before ipcon is connected
% Register acceleration callback to function cb_acceleration
a.addAccelerationCallback(@cb_acceleration);
% Set period for acceleration callback to 100ms
a.setAccelerationCallbackConfiguration(100, false);
input("Press key to exit\n", "s");
ipcon.disconnect();
end
% Callback function for acceleration callback
function cb_acceleration(e)
x = e.x/10000.0;
y = e.y/10000.0;
z = e.z/10000.0;
pitch = round(atan(x / sqrt(y * y + z * z)) * 180 / pi);
roll = round(atan(y / sqrt(x * x + z * z)) * 180 / pi);
fprintf("Pitch: %g°\n", pitch);
fprintf("Roll: %g°\n", roll);
fprintf("\n");
end
|
Download (octave_example_continuous_callback.m)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 | function octave_example_continuous_callback()
more off;
HOST = "localhost";
PORT = 4223;
UID = "XYZ"; % Change XYZ to the UID of your Accelerometer Bricklet 2.0
ipcon = javaObject("com.tinkerforge.IPConnection"); % Create IP connection
a = javaObject("com.tinkerforge.BrickletAccelerometerV2", UID, ipcon); % Create device object
ipcon.connect(HOST, PORT); % Connect to brickd
% Don't use device before ipcon is connected
% Register 16-bit continuous acceleration callback to function cb_continuous_acceleration
a.addContinuousAcceleration16BitCallback(@cb_continuous_acceleration);
% Configure to get X, Y and Z axis continuous acceleration with 16-bit resolution
a.setContinuousAccelerationConfiguration(true, true, true, a.RESOLUTION_16BIT);
input("Press key to exit\n", "s");
ipcon.disconnect();
end
% Callback function for continuous acceleration callback
function cb_continuous_acceleration(e)
data_all = [];
data_axis = [];
acceleration = [e.acceleration];
for i = 1:length(e.acceleration)
if mod(i, 3) ~= 0
data_axis = [data_axis double(acceleration(i)) / 10000.0];
else
data_axis = [data_axis double(acceleration(i)) / 10000.0];
data_all = [data_all; data_axis];
data_axis = [];
end
end
for i = 1:length(data_all)
data_axis = data_all(i,:);
for j = 1:length(data_axis)
if j == 1
fprintf("Acceleration [X]: %g g\n", data_axis(j));
elseif j == 2
fprintf("Acceleration [Y]: %g g\n", data_axis(j));
else
fprintf("Acceleration [Z]: %g g\n\n", data_axis(j));
end
end
end
fprintf("\n");
end
octave_example_continuous_callback();
|
Generally, every method of the MATLAB bindings that returns a value can
throw a TimeoutException
. This exception gets thrown if the
device did not respond. If a cable based connection is used, it is
unlikely that this exception gets thrown (assuming nobody unplugs the
device). However, if a wireless connection is used, timeouts will occur
if the distance to the device gets too big.
Beside the TimeoutException
there is also a NotConnectedException
that
is thrown if a method needs to communicate with the device while the
IP Connection is not connected.
Since the MATLAB bindings are based on Java and Java does not support multiple return values and return by reference is not possible for primitive types, we use small classes that only consist of member variables. The member variables of the returned objects are described in the corresponding method descriptions.
The package for all Brick/Bricklet bindings and the IP Connection is
com.tinkerforge.*
All methods listed below are thread-safe.
BrickletAccelerometerV2
(String uid, IPConnection ipcon)¶Parameters: |
|
---|---|
Returns: |
|
Creates an object with the unique device ID uid
.
In MATLAB:
import com.tinkerforge.BrickletAccelerometerV2;
accelerometerV2 = BrickletAccelerometerV2('YOUR_DEVICE_UID', ipcon);
In Octave:
accelerometerV2 = java_new("com.tinkerforge.BrickletAccelerometerV2", "YOUR_DEVICE_UID", ipcon);
This object can then be used after the IP Connection is connected.
BrickletAccelerometerV2.
getAcceleration
()¶Return Object: |
|
---|
Returns the acceleration in x, y and z direction. The values
are given in gₙ/10000 (1gₙ = 9.80665m/s²). The range is
configured with setConfiguration()
.
If you want to get the acceleration periodically, it is recommended
to use the AccelerationCallback
callback and set the period with
setAccelerationCallbackConfiguration()
.
BrickletAccelerometerV2.
setConfiguration
(int dataRate, int fullScale)¶Parameters: |
|
---|
Configures the data rate and full scale range. Possible values are:
Decreasing data rate or full scale range will also decrease the noise on the data.
The following constants are available for this function:
For dataRate:
For fullScale:
BrickletAccelerometerV2.
getConfiguration
()¶Return Object: |
|
---|
Returns the configuration as set by setConfiguration()
.
The following constants are available for this function:
For dataRate:
For fullScale:
BrickletAccelerometerV2.
setInfoLEDConfig
(int config)¶Parameters: |
|
---|
Configures the info LED (marked as "Force" on the Bricklet) to be either turned off, turned on, or blink in heartbeat mode.
The following constants are available for this function:
For config:
BrickletAccelerometerV2.
getInfoLEDConfig
()¶Returns: |
|
---|
Returns the LED configuration as set by setInfoLEDConfig()
The following constants are available for this function:
For config:
BrickletAccelerometerV2.
setFilterConfiguration
(int iirBypass, int lowPassFilter)¶Parameters: |
|
---|
Configures IIR Bypass filter mode and low pass filter roll off corner frequency.
The filter can be applied or bypassed and the corner frequency can be half or a ninth of the output data rate.
The following constants are available for this function:
For iirBypass:
For lowPassFilter:
New in version 2.0.2 (Plugin).
BrickletAccelerometerV2.
getFilterConfiguration
()¶Return Object: |
|
---|
Returns the configuration as set by setFilterConfiguration()
.
The following constants are available for this function:
For iirBypass:
For lowPassFilter:
New in version 2.0.2 (Plugin).
BrickletAccelerometerV2.
getSPITFPErrorCount
()¶Return Object: |
|
---|
Returns the error count for the communication between Brick and Bricklet.
The errors are divided into
The errors counts are for errors that occur on the Bricklet side. All Bricks have a similar function that returns the errors on the Brick side.
BrickletAccelerometerV2.
setStatusLEDConfig
(int config)¶Parameters: |
|
---|
Sets the status LED configuration. By default the LED shows communication traffic between Brick and Bricklet, it flickers once for every 10 received data packets.
You can also turn the LED permanently on/off or show a heartbeat.
If the Bricklet is in bootloader mode, the LED is will show heartbeat by default.
The following constants are available for this function:
For config:
BrickletAccelerometerV2.
getStatusLEDConfig
()¶Returns: |
|
---|
Returns the configuration as set by setStatusLEDConfig()
The following constants are available for this function:
For config:
BrickletAccelerometerV2.
getChipTemperature
()¶Returns: |
|
---|
Returns the temperature as measured inside the microcontroller. The value returned is not the ambient temperature!
The temperature is only proportional to the real temperature and it has bad accuracy. Practically it is only useful as an indicator for temperature changes.
BrickletAccelerometerV2.
reset
()¶Calling this function will reset the Bricklet. All configurations will be lost.
After a reset you have to create new device objects, calling functions on the existing ones will result in undefined behavior!
BrickletAccelerometerV2.
getIdentity
()¶Return Object: |
|
---|
Returns the UID, the UID where the Bricklet is connected to, the position, the hardware and firmware version as well as the device identifier.
The position can be 'a', 'b', 'c', 'd', 'e', 'f', 'g' or 'h' (Bricklet Port). A Bricklet connected to an Isolator Bricklet is always at position 'z'.
The device identifier numbers can be found here. There is also a constant for the device identifier of this Bricklet.
BrickletAccelerometerV2.
setAccelerationCallbackConfiguration
(long period, boolean valueHasToChange)¶Parameters: |
|
---|
The period is the period with which the AccelerationCallback
callback is triggered periodically. A value of 0 turns the callback off.
If the value has to change-parameter is set to true, the callback is only triggered after the value has changed. If the value didn't change within the period, the callback is triggered immediately on change.
If it is set to false, the callback is continuously triggered with the period, independent of the value.
If this callback is enabled, the ContinuousAcceleration16BitCallback
callback
and ContinuousAcceleration8BitCallback
callback will automatically be disabled.
BrickletAccelerometerV2.
getAccelerationCallbackConfiguration
()¶Return Object: |
|
---|
Returns the callback configuration as set by
setAccelerationCallbackConfiguration()
.
BrickletAccelerometerV2.
setContinuousAccelerationConfiguration
(boolean enableX, boolean enableY, boolean enableZ, int resolution)¶Parameters: |
|
---|
For high throughput of acceleration data (> 1000Hz) you have to use the
ContinuousAcceleration16BitCallback
or ContinuousAcceleration8BitCallback
callbacks.
You can enable the callback for each axis (x, y, z) individually and choose a resolution of 8 bit or 16 bit.
If at least one of the axis is enabled and the resolution is set to 8 bit,
the ContinuousAcceleration8BitCallback
callback is activated. If at least
one of the axis is enabled and the resolution is set to 16 bit,
the ContinuousAcceleration16BitCallback
callback is activated.
The returned values are raw ADC data. If you want to put this data into a FFT to determine the occurrences of specific frequencies we recommend that you use the data as is. It has all of the ADC noise in it. This noise looks like pure noise at first glance, but it might still have some frequnecy information in it that can be utilized by the FFT.
Otherwise you have to use the following formulas that depend on the configured
resolution (8/16 bit) and the full scale range (see setConfiguration()
) to calculate
the data in gₙ/10000 (same unit that is returned by getAcceleration()
):
If a resolution of 8 bit is used, only the 8 most significant bits will be transferred, so you can use the following formulas:
If no axis is enabled, both callbacks are disabled. If one of the continuous
callbacks is enabled, the AccelerationCallback
callback is disabled.
The maximum throughput depends on the exact configuration:
Number of axis enabled | Throughput 8 bit | Throughout 16 bit |
---|---|---|
1 | 25600Hz | 25600Hz |
2 | 25600Hz | 15000Hz |
3 | 20000Hz | 10000Hz |
The following constants are available for this function:
For resolution:
BrickletAccelerometerV2.
getContinuousAccelerationConfiguration
()¶Return Object: |
|
---|
Returns the continuous acceleration configuration as set by
setContinuousAccelerationConfiguration()
.
The following constants are available for this function:
For resolution:
Callbacks can be registered to receive time critical or recurring data from the device. The registration is done with "set" function of MATLAB. The parameters consist of the IP Connection object, the callback name and the callback function. For example, it looks like this in MATLAB:
function my_callback(e)
fprintf('Parameter: %s\n', e.param);
end
set(device, 'ExampleCallback', @(h, e) my_callback(e));
Due to a difference in the Octave Java support the "set" function cannot be used in Octave. The registration is done with "add*Callback" functions of the device object. It looks like this in Octave:
function my_callback(e)
fprintf("Parameter: %s\n", e.param);
end
device.addExampleCallback(@my_callback);
It is possible to add several callbacks and to remove them with the corresponding "remove*Callback" function.
The parameters of the callback are passed to the callback function as fields of
the structure e
, which is derived from the java.util.EventObject
class.
The available callback names with corresponding structure fields are described
below.
Note
Using callbacks for recurring events is always preferred compared to using getters. It will use less USB bandwidth and the latency will be a lot better, since there is no round trip time.
BrickletAccelerometerV2.
AccelerationCallback
¶Event Object: |
|
---|
This callback is triggered periodically according to the configuration set by
setAccelerationCallbackConfiguration()
.
The parameters are the same as getAcceleration()
.
In MATLAB the set()
function can be used to register a callback function
to this callback.
In Octave a callback function can be added to this callback using the
addAccelerationCallback()
function. An added callback function can be removed with
the removeAccelerationCallback()
function.
BrickletAccelerometerV2.
ContinuousAcceleration16BitCallback
¶Event Object: |
|
---|
Returns 30 acceleration values with 16 bit resolution. The data rate can
be configured with setConfiguration()
and this callback can be
enabled with setContinuousAccelerationConfiguration()
.
The returned values are raw ADC data. If you want to put this data into a FFT to determine the occurrences of specific frequencies we recommend that you use the data as is. It has all of the ADC noise in it. This noise looks like pure noise at first glance, but it might still have some frequnecy information in it that can be utilized by the FFT.
Otherwise you have to use the following formulas that depend on the
full scale range (see setConfiguration()
) to calculate
the data in gₙ/10000 (same unit that is returned by getAcceleration()
):
The data is formated in the sequence "x, y, z, x, y, z, ..." depending on the enabled axis. Examples:
In MATLAB the set()
function can be used to register a callback function
to this callback.
In Octave a callback function can be added to this callback using the
addContinuousAcceleration16BitCallback()
function. An added callback function can be removed with
the removeContinuousAcceleration16BitCallback()
function.
BrickletAccelerometerV2.
ContinuousAcceleration8BitCallback
¶Event Object: |
|
---|
Returns 60 acceleration values with 8 bit resolution. The data rate can
be configured with setConfiguration()
and this callback can be
enabled with setContinuousAccelerationConfiguration()
.
The returned values are raw ADC data. If you want to put this data into a FFT to determine the occurrences of specific frequencies we recommend that you use the data as is. It has all of the ADC noise in it. This noise looks like pure noise at first glance, but it might still have some frequnecy information in it that can be utilized by the FFT.
Otherwise you have to use the following formulas that depend on the
full scale range (see setConfiguration()
) to calculate
the data in gₙ/10000 (same unit that is returned by getAcceleration()
):
The data is formated in the sequence "x, y, z, x, y, z, ..." depending on the enabled axis. Examples:
In MATLAB the set()
function can be used to register a callback function
to this callback.
In Octave a callback function can be added to this callback using the
addContinuousAcceleration8BitCallback()
function. An added callback function can be removed with
the removeContinuousAcceleration8BitCallback()
function.
Virtual functions don't communicate with the device itself, but operate only on the API bindings device object. They can be called without the corresponding IP Connection object being connected.
BrickletAccelerometerV2.
getAPIVersion
()¶Return Object: |
|
---|
Returns the version of the API definition implemented by this API bindings. This is neither the release version of this API bindings nor does it tell you anything about the represented Brick or Bricklet.
BrickletAccelerometerV2.
getResponseExpected
(byte functionId)¶Parameters: |
|
---|---|
Returns: |
|
Returns the response expected flag for the function specified by the function ID parameter. It is true if the function is expected to send a response, false otherwise.
For getter functions this is enabled by default and cannot be disabled,
because those functions will always send a response. For callback configuration
functions it is enabled by default too, but can be disabled by
setResponseExpected()
. For setter functions it is disabled by default
and can be enabled.
Enabling the response expected flag for a setter function allows to detect timeouts and other error conditions calls of this setter as well. The device will then send a response for this purpose. If this flag is disabled for a setter function then no response is sent and errors are silently ignored, because they cannot be detected.
The following constants are available for this function:
For functionId:
BrickletAccelerometerV2.
setResponseExpected
(byte functionId, boolean responseExpected)¶Parameters: |
|
---|
Changes the response expected flag of the function specified by the function ID parameter. This flag can only be changed for setter (default value: false) and callback configuration functions (default value: true). For getter functions it is always enabled.
Enabling the response expected flag for a setter function allows to detect timeouts and other error conditions calls of this setter as well. The device will then send a response for this purpose. If this flag is disabled for a setter function then no response is sent and errors are silently ignored, because they cannot be detected.
The following constants are available for this function:
For functionId:
BrickletAccelerometerV2.
setResponseExpectedAll
(boolean responseExpected)¶Parameters: |
|
---|
Changes the response expected flag for all setter and callback configuration functions of this device at once.
Internal functions are used for maintenance tasks such as flashing a new firmware of changing the UID of a Bricklet. These task should be performed using Brick Viewer instead of using the internal functions directly.
BrickletAccelerometerV2.
setBootloaderMode
(int mode)¶Parameters: |
|
---|---|
Returns: |
|
Sets the bootloader mode and returns the status after the requested mode change was instigated.
You can change from bootloader mode to firmware mode and vice versa. A change from bootloader mode to firmware mode will only take place if the entry function, device identifier and CRC are present and correct.
This function is used by Brick Viewer during flashing. It should not be necessary to call it in a normal user program.
The following constants are available for this function:
For mode:
For status:
BrickletAccelerometerV2.
getBootloaderMode
()¶Returns: |
|
---|
Returns the current bootloader mode, see setBootloaderMode()
.
The following constants are available for this function:
For mode:
BrickletAccelerometerV2.
setWriteFirmwarePointer
(long pointer)¶Parameters: |
|
---|
Sets the firmware pointer for writeFirmware()
. The pointer has
to be increased by chunks of size 64. The data is written to flash
every 4 chunks (which equals to one page of size 256).
This function is used by Brick Viewer during flashing. It should not be necessary to call it in a normal user program.
BrickletAccelerometerV2.
writeFirmware
(int[] data)¶Parameters: |
|
---|---|
Returns: |
|
Writes 64 Bytes of firmware at the position as written by
setWriteFirmwarePointer()
before. The firmware is written
to flash every 4 chunks.
You can only write firmware in bootloader mode.
This function is used by Brick Viewer during flashing. It should not be necessary to call it in a normal user program.
BrickletAccelerometerV2.
writeUID
(long uid)¶Parameters: |
|
---|
Writes a new UID into flash. If you want to set a new UID you have to decode the Base58 encoded UID string into an integer first.
We recommend that you use Brick Viewer to change the UID.
BrickletAccelerometerV2.
readUID
()¶Returns: |
|
---|
Returns the current UID as an integer. Encode as Base58 to get the usual string version.
BrickletAccelerometerV2.
DEVICE_IDENTIFIER
¶This constant is used to identify a Accelerometer Bricklet 2.0.
The getIdentity()
function and the
IPConnection.EnumerateCallback
callback of the IP Connection have a deviceIdentifier
parameter to specify
the Brick's or Bricklet's type.
BrickletAccelerometerV2.
DEVICE_DISPLAY_NAME
¶This constant represents the human readable name of a Accelerometer Bricklet 2.0.