This is the description of the C# API bindings for the CO2 Bricklet. General information and technical specifications for the CO2 Bricklet are summarized in its hardware description.
An installation guide for the C# API bindings is part of their general description.
The example code below is Public Domain (CC0 1.0).
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 | using System;
using Tinkerforge;
class Example
{
private static string HOST = "localhost";
private static int PORT = 4223;
private static string UID = "XYZ"; // Change XYZ to the UID of your CO2 Bricklet
static void Main()
{
IPConnection ipcon = new IPConnection(); // Create IP connection
BrickletCO2 co2 = new BrickletCO2(UID, ipcon); // Create device object
ipcon.Connect(HOST, PORT); // Connect to brickd
// Don't use device before ipcon is connected
// Get current CO2 concentration
int co2Concentration = co2.GetCO2Concentration();
Console.WriteLine("CO2 Concentration: " + co2Concentration + " ppm");
Console.WriteLine("Press enter to exit");
Console.ReadLine();
ipcon.Disconnect();
}
}
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 | using System;
using Tinkerforge;
class Example
{
private static string HOST = "localhost";
private static int PORT = 4223;
private static string UID = "XYZ"; // Change XYZ to the UID of your CO2 Bricklet
// Callback function for CO2 concentration callback
static void CO2ConcentrationCB(BrickletCO2 sender, int co2Concentration)
{
Console.WriteLine("CO2 Concentration: " + co2Concentration + " ppm");
}
static void Main()
{
IPConnection ipcon = new IPConnection(); // Create IP connection
BrickletCO2 co2 = new BrickletCO2(UID, ipcon); // Create device object
ipcon.Connect(HOST, PORT); // Connect to brickd
// Don't use device before ipcon is connected
// Register CO2 concentration callback to function CO2ConcentrationCB
co2.CO2ConcentrationCallback += CO2ConcentrationCB;
// Set period for CO2 concentration callback to 1s (1000ms)
// Note: The CO2 concentration callback is only called every second
// if the CO2 concentration has changed since the last call!
co2.SetCO2ConcentrationCallbackPeriod(1000);
Console.WriteLine("Press enter to exit");
Console.ReadLine();
ipcon.Disconnect();
}
}
|
Download (ExampleThreshold.cs)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 | using System;
using Tinkerforge;
class Example
{
private static string HOST = "localhost";
private static int PORT = 4223;
private static string UID = "XYZ"; // Change XYZ to the UID of your CO2 Bricklet
// Callback function for CO2 concentration reached callback
static void CO2ConcentrationReachedCB(BrickletCO2 sender, int co2Concentration)
{
Console.WriteLine("CO2 Concentration: " + co2Concentration + " ppm");
}
static void Main()
{
IPConnection ipcon = new IPConnection(); // Create IP connection
BrickletCO2 co2 = new BrickletCO2(UID, ipcon); // Create device object
ipcon.Connect(HOST, PORT); // Connect to brickd
// Don't use device before ipcon is connected
// Get threshold callbacks with a debounce time of 10 seconds (10000ms)
co2.SetDebouncePeriod(10000);
// Register CO2 concentration reached callback to function
// CO2ConcentrationReachedCB
co2.CO2ConcentrationReachedCallback += CO2ConcentrationReachedCB;
// Configure threshold for CO2 concentration "greater than 750 ppm"
co2.SetCO2ConcentrationCallbackThreshold('>', 750, 0);
Console.WriteLine("Press enter to exit");
Console.ReadLine();
ipcon.Disconnect();
}
}
|
Generally, every method of the C# bindings that returns a value can
throw a Tinkerforge.TimeoutException
. This exception gets thrown if the
device did not respond. If a cable based connection is used, it is
unlikely that this exception gets thrown (assuming nobody plugs the
device out). However, if a wireless connection is used, timeouts will occur
if the distance to the device gets too big.
Since C# does not support multiple return values directly, we use the out
keyword to return multiple values from a method.
The namespace for all Brick/Bricklet bindings and the IPConnection is
Tinkerforge.*
.
All methods listed below are thread-safe.
BrickletCO2
(string uid, IPConnection ipcon)¶Parameters: |
|
---|---|
Returns: |
|
Creates an object with the unique device ID uid
:
BrickletCO2 co2 = new BrickletCO2("YOUR_DEVICE_UID", ipcon);
This object can then be used after the IP Connection is connected.
BrickletCO2.
GetCO2Concentration
()¶Returns: |
|
---|
Returns the measured CO2 concentration.
If you want to get the CO2 concentration periodically, it is recommended to use
the CO2ConcentrationCallback
callback and set the period with
SetCO2ConcentrationCallbackPeriod()
.
BrickletCO2.
GetIdentity
(out string uid, out string connectedUid, out char position, out byte[] hardwareVersion, out byte[] firmwareVersion, out int deviceIdentifier)¶Output Parameters: |
|
---|
Returns the UID, the UID where the Bricklet is connected to, the position, the hardware and firmware version as well as the device identifier.
The position can be 'a', 'b', 'c', 'd', 'e', 'f', 'g' or 'h' (Bricklet Port). A Bricklet connected to an Isolator Bricklet is always at position 'z'.
The device identifier numbers can be found here. There is also a constant for the device identifier of this Bricklet.
BrickletCO2.
SetCO2ConcentrationCallbackPeriod
(long period)¶Parameters: |
|
---|
Sets the period with which the CO2ConcentrationCallback
callback is
triggered periodically. A value of 0 turns the callback off.
The CO2ConcentrationCallback
callback is only triggered if the CO2 concentration
has changed since the last triggering.
BrickletCO2.
GetCO2ConcentrationCallbackPeriod
()¶Returns: |
|
---|
Returns the period as set by SetCO2ConcentrationCallbackPeriod()
.
BrickletCO2.
SetCO2ConcentrationCallbackThreshold
(char option, int min, int max)¶Parameters: |
|
---|
Sets the thresholds for the CO2ConcentrationReachedCallback
callback.
The following options are possible:
Option | Description |
---|---|
'x' | Callback is turned off |
'o' | Callback is triggered when the CO2 concentration is outside the min and max values |
'i' | Callback is triggered when the CO2 concentration is inside the min and max values |
'<' | Callback is triggered when the CO2 concentration is smaller than the min value (max is ignored) |
'>' | Callback is triggered when the CO2 concentration is greater than the min value (max is ignored) |
The following constants are available for this function:
For option:
BrickletCO2.
GetCO2ConcentrationCallbackThreshold
(out char option, out int min, out int max)¶Output Parameters: |
|
---|
Returns the threshold as set by SetCO2ConcentrationCallbackThreshold()
.
The following constants are available for this function:
For option:
BrickletCO2.
SetDebouncePeriod
(long debounce)¶Parameters: |
|
---|
Sets the period with which the threshold callbacks
are triggered, if the thresholds
keep being reached.
BrickletCO2.
GetDebouncePeriod
()¶Returns: |
|
---|
Returns the debounce period as set by SetDebouncePeriod()
.
Callbacks can be registered to receive time critical or recurring data from the device. The registration is done by appending your callback handler to the corresponding event:
void MyCallback(BrickletCO2 sender, int value)
{
System.Console.WriteLine("Value: " + value);
}
co2.ExampleCallback += MyCallback;
The available events are described below.
Note
Using callbacks for recurring events is always preferred compared to using getters. It will use less USB bandwidth and the latency will be a lot better, since there is no round trip time.
BrickletCO2.
CO2ConcentrationCallback
(BrickletCO2 sender, int co2Concentration)¶Callback Parameters: |
|
---|
This callback is triggered periodically with the period that is set by
SetCO2ConcentrationCallbackPeriod()
. The parameter is the CO2
concentration of the sensor.
The CO2ConcentrationCallback
callback is only triggered if the CO2 concentration
has changed since the last triggering.
BrickletCO2.
CO2ConcentrationReachedCallback
(BrickletCO2 sender, int co2Concentration)¶Callback Parameters: |
|
---|
This callback is triggered when the threshold as set by
SetCO2ConcentrationCallbackThreshold()
is reached.
The parameter is the CO2 concentration.
If the threshold keeps being reached, the callback is triggered periodically
with the period as set by SetDebouncePeriod()
.
Virtual functions don't communicate with the device itself, but operate only on the API bindings device object. They can be called without the corresponding IP Connection object being connected.
BrickletCO2.
GetAPIVersion
()¶Output Parameters: |
|
---|
Returns the version of the API definition implemented by this API bindings. This is neither the release version of this API bindings nor does it tell you anything about the represented Brick or Bricklet.
BrickletCO2.
GetResponseExpected
(byte functionId)¶Parameters: |
|
---|---|
Returns: |
|
Returns the response expected flag for the function specified by the function ID parameter. It is true if the function is expected to send a response, false otherwise.
For getter functions this is enabled by default and cannot be disabled,
because those functions will always send a response. For callback configuration
functions it is enabled by default too, but can be disabled by
SetResponseExpected()
. For setter functions it is disabled by default
and can be enabled.
Enabling the response expected flag for a setter function allows to detect timeouts and other error conditions calls of this setter as well. The device will then send a response for this purpose. If this flag is disabled for a setter function then no response is sent and errors are silently ignored, because they cannot be detected.
The following constants are available for this function:
For functionId:
BrickletCO2.
SetResponseExpected
(byte functionId, bool responseExpected)¶Parameters: |
|
---|
Changes the response expected flag of the function specified by the function ID parameter. This flag can only be changed for setter (default value: false) and callback configuration functions (default value: true). For getter functions it is always enabled.
Enabling the response expected flag for a setter function allows to detect timeouts and other error conditions calls of this setter as well. The device will then send a response for this purpose. If this flag is disabled for a setter function then no response is sent and errors are silently ignored, because they cannot be detected.
The following constants are available for this function:
For functionId:
BrickletCO2.
SetResponseExpectedAll
(bool responseExpected)¶Parameters: |
|
---|
Changes the response expected flag for all setter and callback configuration functions of this device at once.
BrickletCO2.
DEVICE_IDENTIFIER
¶This constant is used to identify a CO2 Bricklet.
The GetIdentity()
function and the
IPConnection.EnumerateCallback
callback of the IP Connection have a deviceIdentifier
parameter to specify
the Brick's or Bricklet's type.
BrickletCO2.
DEVICE_DISPLAY_NAME
¶This constant represents the human readable name of a CO2 Bricklet.