This is the description of the JavaScript API bindings for the Thermal Imaging Bricklet. General information and technical specifications for the Thermal Imaging Bricklet are summarized in its hardware description.
An installation guide for the JavaScript API bindings is part of their general description.
The example code below is Public Domain (CC0 1.0).
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 | var Tinkerforge = require('tinkerforge');
var HOST = 'localhost';
var PORT = 4223;
var UID = 'XYZ'; // Change XYZ to the UID of your Thermal Imaging Bricklet
var ipcon = new Tinkerforge.IPConnection(); // Create IP connection
var ti = new Tinkerforge.BrickletThermalImaging(UID, ipcon); // Create device object
ipcon.connect(HOST, PORT,
function (error) {
console.log('Error: ' + error);
}
); // Connect to brickd
// Don't use device before ipcon is connected
ipcon.on(Tinkerforge.IPConnection.CALLBACK_CONNECTED,
function (connectReason) {
// Enable high contrast image transfer for callback
ti.setImageTransferConfig(Tinkerforge.BrickletThermalImaging.IMAGE_TRANSFER_CALLBACK_HIGH_CONTRAST_IMAGE);
}
);
// Register high contrast image callback
ti.on(Tinkerforge.BrickletThermalImaging.CALLBACK_HIGH_CONTRAST_IMAGE,
// Callback function for high contrast image callback
function (image) {
// image is an array of size 80*60 with a 8 bit grey value for each element
}
);
console.log('Press key to exit');
process.stdin.on('data',
function (data) {
ipcon.disconnect();
process.exit(0);
}
);
|
Download (ExampleCallback.html), Test (ExampleCallback.html)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 | <!DOCTYPE html>
<html>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<head>
<title>Tinkerforge | JavaScript Example</title>
</head>
<body>
<div style="text-align:center;">
<h1>Thermal Imaging Bricklet Callback Example</h1>
<p>
<input value="localhost" id="host" type="text" size="20">:
<input value="4280" id="port" type="text" size="5">,
<input value="uid" id="uid" type="text" size="5">
<input value="Start Example" id="start" type="button" onclick="startExample();">
</p>
<p>
<textarea readonly id="text" cols="80" rows="24" style="resize:none;"
>Press "Start Example" to begin ...</textarea>
</p>
</div>
<script src="./Tinkerforge.js" type='text/javascript'></script>
<script type='text/javascript'>
var ipcon;
var textArea = document.getElementById("text");
function startExample() {
textArea.value = "";
var HOST = document.getElementById("host").value;
var PORT = parseInt(document.getElementById("port").value);
var UID = document.getElementById("uid").value;
if(ipcon !== undefined) {
ipcon.disconnect();
}
ipcon = new Tinkerforge.IPConnection(); // Create IP connection
var ti = new Tinkerforge.BrickletThermalImaging(UID, ipcon); // Create device object
ipcon.connect(HOST, PORT,
function(error) {
textArea.value += 'Error: ' + error + '\n';
}
); // Connect to brickd
// Don't use device before ipcon is connected
ipcon.on(Tinkerforge.IPConnection.CALLBACK_CONNECTED,
function (connectReason) {
// Enable high contrast image transfer for callback
ti.setImageTransferConfig(Tinkerforge.BrickletThermalImaging.IMAGE_TRANSFER_CALLBACK_HIGH_CONTRAST_IMAGE);
}
);
// Register high contrast image callback
ti.on(Tinkerforge.BrickletThermalImaging.CALLBACK_HIGH_CONTRAST_IMAGE,
// Callback function for high contrast image callback
function (image) {
// image is an array of size 80*60 with a 8 bit grey value for each element
}
);
}
</script>
</body>
</html>
|
Generally, every function of the JavaScript bindings can take two optional
parameters, returnCallback
and errorCallback
. These are two user
defined callback functions. The returnCallback
function is called with the
results as arguments, if the function returns its results asynchronously. The
errorCallback
is called with an error code in case of an error. The error
code can be one of the following values:
The namespace for the JavaScript bindings is Tinkerforge.*
.
BrickletThermalImaging
(uid, ipcon)¶Parameters: |
|
---|---|
Returns: |
|
Creates an object with the unique device ID uid
:
var thermalImaging = new BrickletThermalImaging("YOUR_DEVICE_UID", ipcon);
This object can then be used after the IP Connection is connected.
BrickletThermalImaging.
getHighContrastImage
([returnCallback][, errorCallback])¶Callback Parameters: |
|
---|---|
Returns: |
|
Returns the current high contrast image. See here for the difference between High Contrast and Temperature Image. If you don't know what to use the High Contrast Image is probably right for you.
The data is organized as a 8-bit value 80x60 pixel matrix linearized in a one-dimensional array. The data is arranged line by line from top left to bottom right.
Each 8-bit value represents one gray-scale image pixel that can directly be shown to a user on a display.
Before you can use this function you have to enable it with
setImageTransferConfig()
.
BrickletThermalImaging.
getTemperatureImage
([returnCallback][, errorCallback])¶Callback Parameters: |
|
---|---|
Returns: |
|
Returns the current temperature image. See here for the difference between High Contrast and Temperature Image. If you don't know what to use the High Contrast Image is probably right for you.
The data is organized as a 16-bit value 80x60 pixel matrix linearized in a one-dimensional array. The data is arranged line by line from top left to bottom right.
Each 16-bit value represents one temperature measurement in either
Kelvin/10 or Kelvin/100 (depending on the resolution set with setResolution()
).
Before you can use this function you have to enable it with
setImageTransferConfig()
.
BrickletThermalImaging.
getStatistics
([returnCallback][, errorCallback])¶Callback Parameters: |
|
---|---|
Returns: |
|
Returns the spotmeter statistics, various temperatures, current resolution and status bits.
The spotmeter statistics are:
The temperatures are:
The resolution is either 0 to 6553 Kelvin or 0 to 655 Kelvin. If the resolution is the former, the temperatures are in Kelvin/10, if it is the latter the temperatures are in Kelvin/100.
FFC (Flat Field Correction) Status:
Temperature warning bits:
The following constants are available for this function:
For resolution:
For ffc_status:
BrickletThermalImaging.
setResolution
(resolution[, returnCallback][, errorCallback])¶Parameters: |
|
---|---|
Callback Parameters: |
|
Returns: |
|
Sets the resolution. The Thermal Imaging Bricklet can either measure
The accuracy is specified for -10°C to 450°C in the first range and -10°C and 140°C in the second range.
The following constants are available for this function:
For resolution:
BrickletThermalImaging.
getResolution
([returnCallback][, errorCallback])¶Callback Parameters: |
|
---|---|
Returns: |
|
Returns the resolution as set by setResolution()
.
The following constants are available for this function:
For resolution:
BrickletThermalImaging.
setSpotmeterConfig
(regionOfInterest[, returnCallback][, errorCallback])¶Parameters: |
|
---|---|
Callback Parameters: |
|
Returns: |
|
Sets the spotmeter region of interest. The 4 values are
The spotmeter statistics can be read out with getStatistics()
.
BrickletThermalImaging.
getSpotmeterConfig
([returnCallback][, errorCallback])¶Callback Parameters: |
|
---|---|
Returns: |
|
Returns the spotmeter config as set by setSpotmeterConfig()
.
BrickletThermalImaging.
setHighContrastConfig
(regionOfInterest, dampeningFactor, clipLimit, emptyCounts[, returnCallback][, errorCallback])¶Parameters: |
|
---|---|
Callback Parameters: |
|
Returns: |
|
Sets the high contrast region of interest, dampening factor, clip limit and empty counts.
This config is only used in high contrast mode (see setImageTransferConfig()
).
The high contrast region of interest consists of four values:
The algorithm to generate the high contrast image is applied to this region.
Dampening Factor: This parameter is the amount of temporal dampening applied to the HEQ (history equalization) transformation function. An IIR filter of the form:
(N / 256) * previous + ((256 - N) / 256) * current
is applied, and the HEQ dampening factor represents the value N in the equation, i.e., a value that applies to the amount of influence the previous HEQ transformation function has on the current function. The lower the value of N the higher the influence of the current video frame whereas the higher the value of N the more influence the previous damped transfer function has.
Clip Limit Index 0 (AGC HEQ Clip Limit High): This parameter defines the maximum number of pixels allowed to accumulate in any given histogram bin. Any additional pixels in a given bin are clipped. The effect of this parameter is to limit the influence of highly-populated bins on the resulting HEQ transformation function.
Clip Limit Index 1 (AGC HEQ Clip Limit Low): This parameter defines an artificial population that is added to every non-empty histogram bin. In other words, if the Clip Limit Low is set to L, a bin with an actual population of X will have an effective population of L + X. Any empty bin that is nearby a populated bin will be given an artificial population of L. The effect of higher values is to provide a more linear transfer function; lower values provide a more non-linear (equalized) transfer function.
Empty Counts: This parameter specifies the maximum number of pixels in a bin that will be interpreted as an empty bin. Histogram bins with this number of pixels or less will be processed as an empty bin.
BrickletThermalImaging.
getHighContrastConfig
([returnCallback][, errorCallback])¶Callback Parameters: |
|
---|---|
Returns: |
|
Returns the high contrast config as set by setHighContrastConfig()
.
BrickletThermalImaging.
setFluxLinearParameters
(sceneEmissivity, temperatureBackground, tauWindow, temperaturWindow, tauAtmosphere, temperatureAtmosphere, reflectionWindow, temperatureReflection[, returnCallback][, errorCallback])¶Parameters: |
|
---|---|
Callback Parameters: |
|
Returns: |
|
Sets the flux linear parameters that can be used for radiometry calibration.
See FLIR document 102-PS245-100-01 for more details.
New in version 2.0.5 (Plugin).
BrickletThermalImaging.
getFluxLinearParameters
([returnCallback][, errorCallback])¶Callback Parameters: |
|
---|---|
Returns: |
|
Returns the flux linear parameters, as set by setFluxLinearParameters()
.
New in version 2.0.5 (Plugin).
BrickletThermalImaging.
setFFCShutterMode
(shutterMode, tempLockoutState, videoFreezeDuringFFC, ffcDesired, elapsedTimeSinceLastFFC, desiredFFCPeriod, explicitCmdToOpen, desiredFFCTempDelta, imminentDelay[, returnCallback][, errorCallback])¶Parameters: |
|
---|---|
Callback Parameters: |
|
Returns: |
|
Sets the FFC shutter mode parameters.
See FLIR document 110-0144-03 4.5.15 for more details.
The following constants are available for this function:
For shutter_mode:
For temp_lockout_state:
New in version 2.0.6 (Plugin).
BrickletThermalImaging.
getFFCShutterMode
([returnCallback][, errorCallback])¶Callback Parameters: |
|
---|---|
Returns: |
|
Sets the FFC shutter mode parameters.
See FLIR document 110-0144-03 4.5.15 for more details.
The following constants are available for this function:
For shutter_mode:
For temp_lockout_state:
New in version 2.0.6 (Plugin).
BrickletThermalImaging.
runFFCNormalization
([returnCallback][, errorCallback])¶Callback Parameters: |
|
---|---|
Returns: |
|
Starts the Flat-Field Correction (FFC) normalization.
See FLIR document 110-0144-03 4.5.16 for more details.
New in version 2.0.6 (Plugin).
BrickletThermalImaging.
getSPITFPErrorCount
([returnCallback][, errorCallback])¶Callback Parameters: |
|
---|---|
Returns: |
|
Returns the error count for the communication between Brick and Bricklet.
The errors are divided into
The errors counts are for errors that occur on the Bricklet side. All Bricks have a similar function that returns the errors on the Brick side.
BrickletThermalImaging.
setStatusLEDConfig
(config[, returnCallback][, errorCallback])¶Parameters: |
|
---|---|
Callback Parameters: |
|
Returns: |
|
Sets the status LED configuration. By default the LED shows communication traffic between Brick and Bricklet, it flickers once for every 10 received data packets.
You can also turn the LED permanently on/off or show a heartbeat.
If the Bricklet is in bootloader mode, the LED is will show heartbeat by default.
The following constants are available for this function:
For config:
BrickletThermalImaging.
getStatusLEDConfig
([returnCallback][, errorCallback])¶Callback Parameters: |
|
---|---|
Returns: |
|
Returns the configuration as set by setStatusLEDConfig()
The following constants are available for this function:
For config:
BrickletThermalImaging.
getChipTemperature
([returnCallback][, errorCallback])¶Callback Parameters: |
|
---|---|
Returns: |
|
Returns the temperature as measured inside the microcontroller. The value returned is not the ambient temperature!
The temperature is only proportional to the real temperature and it has bad accuracy. Practically it is only useful as an indicator for temperature changes.
BrickletThermalImaging.
reset
([returnCallback][, errorCallback])¶Callback Parameters: |
|
---|---|
Returns: |
|
Calling this function will reset the Bricklet. All configurations will be lost.
After a reset you have to create new device objects, calling functions on the existing ones will result in undefined behavior!
BrickletThermalImaging.
getIdentity
([returnCallback][, errorCallback])¶Callback Parameters: |
|
---|---|
Returns: |
|
Returns the UID, the UID where the Bricklet is connected to, the position, the hardware and firmware version as well as the device identifier.
The position can be 'a', 'b', 'c', 'd', 'e', 'f', 'g' or 'h' (Bricklet Port). A Bricklet connected to an Isolator Bricklet is always at position 'z'.
The device identifier numbers can be found here. There is also a constant for the device identifier of this Bricklet.
BrickletThermalImaging.
on
(callback_id, function[, errorCallback])¶Parameters: |
|
---|---|
Returns: |
|
Registers the given function
with the given callback_id
.
The available callback IDs with corresponding function signatures are listed below.
BrickletThermalImaging.
setImageTransferConfig
(config[, returnCallback][, errorCallback])¶Parameters: |
|
---|---|
Callback Parameters: |
|
Returns: |
|
The necessary bandwidth of this Bricklet is too high to use getter/callback or high contrast/temperature image at the same time. You have to configure the one you want to use, the Bricklet will optimize the internal configuration accordingly.
Corresponding functions:
getHighContrastImage()
.getTemperatureImage()
.CALLBACK_HIGH_CONTRAST_IMAGE
callback.CALLBACK_TEMPERATURE_IMAGE
callback.The following constants are available for this function:
For config:
BrickletThermalImaging.
getImageTransferConfig
([returnCallback][, errorCallback])¶Callback Parameters: |
|
---|---|
Returns: |
|
Returns the image transfer config, as set by setImageTransferConfig()
.
The following constants are available for this function:
For config:
Callbacks can be registered to receive
time critical or recurring data from the device. The registration is done
with the on()
function of
the device object. The first parameter is the callback ID and the second
parameter the callback function:
thermalImaging.on(BrickletThermalImaging.CALLBACK_EXAMPLE,
function (param) {
console.log(param);
}
);
The available constants with inherent number and type of parameters are described below.
Note
Using callbacks for recurring events is always preferred compared to using getters. It will use less USB bandwidth and the latency will be a lot better, since there is no round trip time.
BrickletThermalImaging.
CALLBACK_HIGH_CONTRAST_IMAGE
¶Callback Parameters: |
|
---|
This callback is triggered with every new high contrast image if the transfer image
config is configured for high contrast callback (see setImageTransferConfig()
).
The data is organized as a 8-bit value 80x60 pixel matrix linearized in a one-dimensional array. The data is arranged line by line from top left to bottom right.
Each 8-bit value represents one gray-scale image pixel that can directly be shown to a user on a display.
Note
If reconstructing the value fails, the callback is triggered with null for image.
BrickletThermalImaging.
CALLBACK_TEMPERATURE_IMAGE
¶Callback Parameters: |
|
---|
This callback is triggered with every new temperature image if the transfer image
config is configured for temperature callback (see setImageTransferConfig()
).
The data is organized as a 16-bit value 80x60 pixel matrix linearized in a one-dimensional array. The data is arranged line by line from top left to bottom right.
Each 16-bit value represents one temperature measurement in either
Kelvin/10 or Kelvin/100 (depending on the resolution set with setResolution()
).
Note
If reconstructing the value fails, the callback is triggered with null for image.
Virtual functions don't communicate with the device itself, but operate only on the API bindings device object. They can be called without the corresponding IP Connection object being connected.
BrickletThermalImaging.
getAPIVersion
()¶Returns: |
|
---|
Returns the version of the API definition implemented by this API bindings. This is neither the release version of this API bindings nor does it tell you anything about the represented Brick or Bricklet.
BrickletThermalImaging.
getResponseExpected
(functionId[, errorCallback])¶Parameters: |
|
---|---|
Returns: |
|
Returns the response expected flag for the function specified by the function ID parameter. It is true if the function is expected to send a response, false otherwise.
For getter functions this is enabled by default and cannot be disabled,
because those functions will always send a response. For callback configuration
functions it is enabled by default too, but can be disabled by
setResponseExpected()
. For setter functions it is disabled by default
and can be enabled.
Enabling the response expected flag for a setter function allows to detect timeouts and other error conditions calls of this setter as well. The device will then send a response for this purpose. If this flag is disabled for a setter function then no response is sent and errors are silently ignored, because they cannot be detected.
The following constants are available for this function:
For function_id:
BrickletThermalImaging.
setResponseExpected
(functionId, responseExpected[, errorCallback])¶Parameters: |
|
---|---|
Returns: |
|
Changes the response expected flag of the function specified by the function ID parameter. This flag can only be changed for setter (default value: false) and callback configuration functions (default value: true). For getter functions it is always enabled.
Enabling the response expected flag for a setter function allows to detect timeouts and other error conditions calls of this setter as well. The device will then send a response for this purpose. If this flag is disabled for a setter function then no response is sent and errors are silently ignored, because they cannot be detected.
The following constants are available for this function:
For function_id:
BrickletThermalImaging.
setResponseExpectedAll
(responseExpected)¶Parameters: |
|
---|---|
Returns: |
|
Changes the response expected flag for all setter and callback configuration functions of this device at once.
Internal functions are used for maintenance tasks such as flashing a new firmware of changing the UID of a Bricklet. These task should be performed using Brick Viewer instead of using the internal functions directly.
BrickletThermalImaging.
setBootloaderMode
(mode[, returnCallback][, errorCallback])¶Parameters: |
|
---|---|
Callback Parameters: |
|
Returns: |
|
Sets the bootloader mode and returns the status after the requested mode change was instigated.
You can change from bootloader mode to firmware mode and vice versa. A change from bootloader mode to firmware mode will only take place if the entry function, device identifier and CRC are present and correct.
This function is used by Brick Viewer during flashing. It should not be necessary to call it in a normal user program.
The following constants are available for this function:
For mode:
For status:
BrickletThermalImaging.
getBootloaderMode
([returnCallback][, errorCallback])¶Callback Parameters: |
|
---|---|
Returns: |
|
Returns the current bootloader mode, see setBootloaderMode()
.
The following constants are available for this function:
For mode:
BrickletThermalImaging.
setWriteFirmwarePointer
(pointer[, returnCallback][, errorCallback])¶Parameters: |
|
---|---|
Callback Parameters: |
|
Returns: |
|
Sets the firmware pointer for writeFirmware()
. The pointer has
to be increased by chunks of size 64. The data is written to flash
every 4 chunks (which equals to one page of size 256).
This function is used by Brick Viewer during flashing. It should not be necessary to call it in a normal user program.
BrickletThermalImaging.
writeFirmware
(data[, returnCallback][, errorCallback])¶Parameters: |
|
---|---|
Callback Parameters: |
|
Returns: |
|
Writes 64 Bytes of firmware at the position as written by
setWriteFirmwarePointer()
before. The firmware is written
to flash every 4 chunks.
You can only write firmware in bootloader mode.
This function is used by Brick Viewer during flashing. It should not be necessary to call it in a normal user program.
BrickletThermalImaging.
writeUID
(uid[, returnCallback][, errorCallback])¶Parameters: |
|
---|---|
Callback Parameters: |
|
Returns: |
|
Writes a new UID into flash. If you want to set a new UID you have to decode the Base58 encoded UID string into an integer first.
We recommend that you use Brick Viewer to change the UID.
BrickletThermalImaging.
readUID
([returnCallback][, errorCallback])¶Callback Parameters: |
|
---|---|
Returns: |
|
Returns the current UID as an integer. Encode as Base58 to get the usual string version.
BrickletThermalImaging.
DEVICE_IDENTIFIER
¶This constant is used to identify a Thermal Imaging Bricklet.
The getIdentity()
function and the
IPConnection.CALLBACK_ENUMERATE
callback of the IP Connection have a device_identifier
parameter to specify
the Brick's or Bricklet's type.
BrickletThermalImaging.
DEVICE_DISPLAY_NAME
¶This constant represents the human readable name of a Thermal Imaging Bricklet.