Visual Basic .NET - IMU Bricklet 3.0

This is the description of the Visual Basic .NET API bindings for the IMU Bricklet 3.0. General information and technical specifications for the IMU Bricklet 3.0 are summarized in its hardware description.

An installation guide for the Visual Basic .NET API bindings is part of their general description.

Examples

The example code below is Public Domain (CC0 1.0).

Simple

Download (ExampleSimple.vb)

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
Imports System
Imports Tinkerforge

Module ExampleSimple
    Const HOST As String = "localhost"
    Const PORT As Integer = 4223
    Const UID As String = "XYZ" ' Change XYZ to the UID of your IMU Bricklet 3.0

    Sub Main()
        Dim ipcon As New IPConnection() ' Create IP connection
        Dim imu As New BrickletIMUV3(UID, ipcon) ' Create device object

        ipcon.Connect(HOST, PORT) ' Connect to brickd
        ' Don't use device before ipcon is connected

        ' Get current quaternion
        Dim w, x, y, z As Short

        imu.GetQuaternion(w, x, y, z)

        Console.WriteLine("Quaternion [W]: " + (w/16383.0).ToString())
        Console.WriteLine("Quaternion [X]: " + (x/16383.0).ToString())
        Console.WriteLine("Quaternion [Y]: " + (y/16383.0).ToString())
        Console.WriteLine("Quaternion [Z]: " + (z/16383.0).ToString())

        Console.WriteLine("Press key to exit")
        Console.ReadLine()
        ipcon.Disconnect()
    End Sub
End Module

Callback

Download (ExampleCallback.vb)

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
Imports System
Imports Tinkerforge

Module ExampleCallback
    Const HOST As String = "localhost"
    Const PORT As Integer = 4223
    Const UID As String = "XYZ" ' Change XYZ to the UID of your IMU Bricklet 3.0

    ' Callback subroutine for quaternion callback
    Sub QuaternionCB(ByVal sender As BrickletIMUV3, ByVal w As Short, ByVal x As Short, _
                     ByVal y As Short, ByVal z As Short)
        Console.WriteLine("Quaternion [W]: " + (w/16383.0).ToString())
        Console.WriteLine("Quaternion [X]: " + (x/16383.0).ToString())
        Console.WriteLine("Quaternion [Y]: " + (y/16383.0).ToString())
        Console.WriteLine("Quaternion [Z]: " + (z/16383.0).ToString())
        Console.WriteLine("")
    End Sub

    Sub Main()
        Dim ipcon As New IPConnection() ' Create IP connection
        Dim imu As New BrickletIMUV3(UID, ipcon) ' Create device object

        ipcon.Connect(HOST, PORT) ' Connect to brickd
        ' Don't use device before ipcon is connected

        ' Register quaternion callback to subroutine QuaternionCB
        AddHandler imu.QuaternionCallback, AddressOf QuaternionCB

        ' Set period for quaternion callback to 0.1s (100ms)
        imu.SetQuaternionCallbackConfiguration(100, False)

        Console.WriteLine("Press key to exit")
        Console.ReadLine()
        ipcon.Disconnect()
    End Sub
End Module

All Data

Download (ExampleAllData.vb)

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
Imports System
Imports Tinkerforge

Module ExampleAllData
    Const HOST As String = "localhost"
    Const PORT As Integer = 4223
    Const UID As String = "XYZ" ' Change XYZ to the UID of your IMU Bricklet 3.0

    ' Callback subroutine for all data callback
    Sub AllDataCB(ByVal sender As BrickletIMUV3, ByVal acceleration As Short(), _
                  ByVal magneticField As Short(), ByVal angularVelocity As Short(), _
                  ByVal eulerAngle As Short(), ByVal quaternion As Short(), _
                  ByVal linearAcceleration As Short(), ByVal gravityVector As Short(), _
                  ByVal temperature As Short, ByVal calibrationStatus As Byte)
        Console.WriteLine("Acceleration [X]: " + (acceleration(0)/100.0).ToString() + " m/s²")
        Console.WriteLine("Acceleration [Y]: " + (acceleration(1)/100.0).ToString() + " m/s²")
        Console.WriteLine("Acceleration [Z]: " + (acceleration(2)/100.0).ToString() + " m/s²")
        Console.WriteLine("Magnetic Field [X]: " + (magneticField(0)/16.0).ToString() + " µT")
        Console.WriteLine("Magnetic Field [Y]: " + (magneticField(1)/16.0).ToString() + " µT")
        Console.WriteLine("Magnetic Field [Z]: " + (magneticField(2)/16.0).ToString() + " µT")
        Console.WriteLine("Angular Velocity [X]: " + (angularVelocity(0)/16.0).ToString() + " °/s")
        Console.WriteLine("Angular Velocity [Y]: " + (angularVelocity(1)/16.0).ToString() + " °/s")
        Console.WriteLine("Angular Velocity [Z]: " + (angularVelocity(2)/16.0).ToString() + " °/s")
        Console.WriteLine("Euler Angle [Heading]: " + (eulerAngle(0)/16.0).ToString() + " °")
        Console.WriteLine("Euler Angle [Roll]: " + (eulerAngle(1)/16.0).ToString() + " °")
        Console.WriteLine("Euler Angle [Pitch]: " + (eulerAngle(2)/16.0).ToString() + " °")
        Console.WriteLine("Quaternion [W]: " + (quaternion(0)/16383.0).ToString())
        Console.WriteLine("Quaternion [X]: " + (quaternion(1)/16383.0).ToString())
        Console.WriteLine("Quaternion [Y]: " + (quaternion(2)/16383.0).ToString())
        Console.WriteLine("Quaternion [Z]: " + (quaternion(3)/16383.0).ToString())
        Console.WriteLine("Linear Acceleration [X]: " + (linearAcceleration(0)/100.0).ToString() + " m/s²")
        Console.WriteLine("Linear Acceleration [Y]: " + (linearAcceleration(1)/100.0).ToString() + " m/s²")
        Console.WriteLine("Linear Acceleration [Z]: " + (linearAcceleration(2)/100.0).ToString() + " m/s²")
        Console.WriteLine("Gravity Vector [X]: " + (gravityVector(0)/100.0).ToString() + " m/s²")
        Console.WriteLine("Gravity Vector [Y]: " + (gravityVector(1)/100.0).ToString() + " m/s²")
        Console.WriteLine("Gravity Vector [Z]: " + (gravityVector(2)/100.0).ToString() + " m/s²")
        Console.WriteLine("Temperature: " + temperature.ToString() + " °C")
        Console.WriteLine("Calibration Status: " + Convert.ToString(calibrationStatus, 2))
        Console.WriteLine("")
    End Sub

    Sub Main()
        Dim ipcon As New IPConnection() ' Create IP connection
        Dim imu As New BrickletIMUV3(UID, ipcon) ' Create device object

        ipcon.Connect(HOST, PORT) ' Connect to brickd
        ' Don't use device before ipcon is connected

        ' Register all data callback to subroutine AllDataCB
        AddHandler imu.AllDataCallback, AddressOf AllDataCB

        ' Set period for all data callback to 0.1s (100ms)
        imu.SetAllDataCallbackConfiguration(100, False)

        Console.WriteLine("Press key to exit")
        Console.ReadLine()
        ipcon.Disconnect()
    End Sub
End Module

API

Since Visual Basic .NET does not support multiple return values directly, we use the ByRef keyword to return multiple values from a function.

All functions and procedures listed below are thread-safe.

Basic Functions

Class BrickletIMUV3(ByVal uid As String, ByVal ipcon As IPConnection)

Creates an object with the unique device ID uid:

Dim imuV3 As New BrickletIMUV3("YOUR_DEVICE_UID", ipcon)

This object can then be used after the IP Connection is connected.

Sub BrickletIMUV3.GetOrientation(ByRef heading As Short, ByRef roll As Short, ByRef pitch As Short)
Output Parameters:
  • heading – Type: Short, Unit: 1/16 °, Range: [0 to 5760]
  • roll – Type: Short, Unit: 1/16 °, Range: [-1440 to 1440]
  • pitch – Type: Short, Unit: 1/16 °, Range: [-2880 to 2880]

Returns the current orientation (heading, roll, pitch) of the IMU Brick as independent Euler angles. Note that Euler angles always experience a gimbal lock. We recommend that you use quaternions instead, if you need the absolute orientation.

If you want to get the orientation periodically, it is recommended to use the OrientationCallback callback and set the period with SetOrientationCallbackConfiguration().

Sub BrickletIMUV3.GetLinearAcceleration(ByRef x As Short, ByRef y As Short, ByRef z As Short)
Output Parameters:
  • x – Type: Short, Unit: 1 cm/s², Range: ?
  • y – Type: Short, Unit: 1 cm/s², Range: ?
  • z – Type: Short, Unit: 1 cm/s², Range: ?

Returns the linear acceleration of the IMU Brick for the x, y and z axis. The acceleration is in the range configured with SetSensorConfiguration().

The linear acceleration is the acceleration in each of the three axis of the IMU Brick with the influences of gravity removed.

It is also possible to get the gravity vector with the influence of linear acceleration removed, see GetGravityVector().

If you want to get the linear acceleration periodically, it is recommended to use the LinearAccelerationCallback callback and set the period with SetLinearAccelerationCallbackConfiguration().

Sub BrickletIMUV3.GetGravityVector(ByRef x As Short, ByRef y As Short, ByRef z As Short)
Output Parameters:
  • x – Type: Short, Unit: 1 cm/s², Range: [-981 to 981]
  • y – Type: Short, Unit: 1 cm/s², Range: [-981 to 981]
  • z – Type: Short, Unit: 1 cm/s², Range: [-981 to 981]

Returns the current gravity vector of the IMU Brick for the x, y and z axis.

The gravity vector is the acceleration that occurs due to gravity. Influences of additional linear acceleration are removed.

It is also possible to get the linear acceleration with the influence of gravity removed, see GetLinearAcceleration().

If you want to get the gravity vector periodically, it is recommended to use the GravityVectorCallback callback and set the period with SetGravityVectorCallbackConfiguration().

Sub BrickletIMUV3.GetQuaternion(ByRef w As Short, ByRef x As Short, ByRef y As Short, ByRef z As Short)
Output Parameters:
  • w – Type: Short, Unit: 1/16383, Range: [-214 + 1 to 214 - 1]
  • x – Type: Short, Unit: 1/16383, Range: [-214 + 1 to 214 - 1]
  • y – Type: Short, Unit: 1/16383, Range: [-214 + 1 to 214 - 1]
  • z – Type: Short, Unit: 1/16383, Range: [-214 + 1 to 214 - 1]

Returns the current orientation (w, x, y, z) of the IMU Brick as quaternions.

You have to divide the return values by 16383 (14 bit) to get the usual range of -1.0 to +1.0 for quaternions.

If you want to get the quaternions periodically, it is recommended to use the QuaternionCallback callback and set the period with SetQuaternionCallbackConfiguration().

Sub BrickletIMUV3.GetAllData(ByRef acceleration() As Short, ByRef magneticField() As Short, ByRef angularVelocity() As Short, ByRef eulerAngle() As Short, ByRef quaternion() As Short, ByRef linearAcceleration() As Short, ByRef gravityVector() As Short, ByRef temperature As Short, ByRef calibrationStatus As Byte)
Output Parameters:
  • acceleration – Type: Short Array, Length: 3
    • 0: x – Type: Short, Unit: 1 cm/s², Range: ?
    • 1: y – Type: Short, Unit: 1 cm/s², Range: ?
    • 2: z – Type: Short, Unit: 1 cm/s², Range: ?
  • magneticField – Type: Short Array, Length: 3
    • 0: x – Type: Short, Unit: 1/16 µT, Range: [-20800 to 20800]
    • 1: y – Type: Short, Unit: 1/16 µT, Range: [-20800 to 20800]
    • 2: z – Type: Short, Unit: 1/16 µT, Range: [-40000 to 40000]
  • angularVelocity – Type: Short Array, Length: 3
    • 0: x – Type: Short, Unit: 1/16 °/s, Range: ?
    • 1: y – Type: Short, Unit: 1/16 °/s, Range: ?
    • 2: z – Type: Short, Unit: 1/16 °/s, Range: ?
  • eulerAngle – Type: Short Array, Length: 3
    • 0: heading – Type: Short, Unit: 1/16 °, Range: [0 to 5760]
    • 1: roll – Type: Short, Unit: 1/16 °, Range: [-1440 to 1440]
    • 2: pitch – Type: Short, Unit: 1/16 °, Range: [-2880 to 2880]
  • quaternion – Type: Short Array, Length: 4
    • 0: w – Type: Short, Unit: 1/16383, Range: [-214 + 1 to 214 - 1]
    • 1: x – Type: Short, Unit: 1/16383, Range: [-214 + 1 to 214 - 1]
    • 2: y – Type: Short, Unit: 1/16383, Range: [-214 + 1 to 214 - 1]
    • 3: z – Type: Short, Unit: 1/16383, Range: [-214 + 1 to 214 - 1]
  • linearAcceleration – Type: Short Array, Length: 3
    • 0: x – Type: Short, Unit: 1 cm/s², Range: ?
    • 1: y – Type: Short, Unit: 1 cm/s², Range: ?
    • 2: z – Type: Short, Unit: 1 cm/s², Range: ?
  • gravityVector – Type: Short Array, Length: 3
    • 0: x – Type: Short, Unit: 1 cm/s², Range: [-981 to 981]
    • 1: y – Type: Short, Unit: 1 cm/s², Range: [-981 to 981]
    • 2: z – Type: Short, Unit: 1 cm/s², Range: [-981 to 981]
  • temperature – Type: Short, Unit: 1 °C, Range: [-128 to 127]
  • calibrationStatus – Type: Byte, Range: [0 to 255]

Return all of the available data of the IMU Brick.

The calibration status consists of four pairs of two bits. Each pair of bits represents the status of the current calibration.

  • bit 0-1: Magnetometer
  • bit 2-3: Accelerometer
  • bit 4-5: Gyroscope
  • bit 6-7: System

A value of 0 means for "not calibrated" and a value of 3 means "fully calibrated". In your program you should always be able to ignore the calibration status, it is used by the calibration window of the Brick Viewer and it can be ignored after the first calibration. See the documentation in the calibration window for more information regarding the calibration of the IMU Brick.

If you want to get the data periodically, it is recommended to use the AllDataCallback callback and set the period with SetAllDataCallbackConfiguration().

Advanced Functions

Sub BrickletIMUV3.GetAcceleration(ByRef x As Short, ByRef y As Short, ByRef z As Short)
Output Parameters:
  • x – Type: Short, Unit: 1 cm/s², Range: ?
  • y – Type: Short, Unit: 1 cm/s², Range: ?
  • z – Type: Short, Unit: 1 cm/s², Range: ?

Returns the calibrated acceleration from the accelerometer for the x, y and z axis. The acceleration is in the range configured with SetSensorConfiguration().

If you want to get the acceleration periodically, it is recommended to use the AccelerationCallback callback and set the period with SetAccelerationCallbackConfiguration().

Sub BrickletIMUV3.GetMagneticField(ByRef x As Short, ByRef y As Short, ByRef z As Short)
Output Parameters:
  • x – Type: Short, Unit: 1/16 µT, Range: [-20800 to 20800]
  • y – Type: Short, Unit: 1/16 µT, Range: [-20800 to 20800]
  • z – Type: Short, Unit: 1/16 µT, Range: [-40000 to 40000]

Returns the calibrated magnetic field from the magnetometer for the x, y and z axis.

If you want to get the magnetic field periodically, it is recommended to use the MagneticFieldCallback callback and set the period with SetMagneticFieldCallbackConfiguration().

Sub BrickletIMUV3.GetAngularVelocity(ByRef x As Short, ByRef y As Short, ByRef z As Short)
Output Parameters:
  • x – Type: Short, Unit: 1/16 °/s, Range: ?
  • y – Type: Short, Unit: 1/16 °/s, Range: ?
  • z – Type: Short, Unit: 1/16 °/s, Range: ?

Returns the calibrated angular velocity from the gyroscope for the x, y and z axis. The angular velocity is in the range configured with SetSensorConfiguration().

If you want to get the angular velocity periodically, it is recommended to use the AngularVelocityCallback acallback nd set the period with SetAngularVelocityCallbackConfiguration().

Function BrickletIMUV3.GetTemperature() As Short
Returns:
  • temperature – Type: Short, Unit: 1 °C, Range: [-128 to 127]

Returns the temperature of the IMU Brick. The temperature is measured in the core of the BNO055 IC, it is not the ambient temperature

Function BrickletIMUV3.SaveCalibration() As Boolean
Returns:
  • calibrationDone – Type: Boolean

A call of this function saves the current calibration to be used as a starting point for the next restart of continuous calibration of the IMU Brick.

A return value of true means that the calibration could be used and false means that it could not be used (this happens if the calibration status is not "fully calibrated").

This function is used by the calibration window of the Brick Viewer, you should not need to call it in your program.

Sub BrickletIMUV3.SetSensorConfiguration(ByVal magnetometerRate As Byte, ByVal gyroscopeRange As Byte, ByVal gyroscopeBandwidth As Byte, ByVal accelerometerRange As Byte, ByVal accelerometerBandwidth As Byte)
Parameters:
  • magnetometerRate – Type: Byte, Range: See constants, Default: 5
  • gyroscopeRange – Type: Byte, Range: See constants, Default: 0
  • gyroscopeBandwidth – Type: Byte, Range: See constants, Default: 7
  • accelerometerRange – Type: Byte, Range: See constants, Default: 1
  • accelerometerBandwidth – Type: Byte, Range: See constants, Default: 3

Sets the available sensor configuration for the Magnetometer, Gyroscope and Accelerometer. The Accelerometer Range is user selectable in all fusion modes, all other configurations are auto-controlled in fusion mode.

The following constants are available for this function:

For magnetometerRate:

  • BrickletIMUV3.MAGNETOMETER_RATE_2HZ = 0
  • BrickletIMUV3.MAGNETOMETER_RATE_6HZ = 1
  • BrickletIMUV3.MAGNETOMETER_RATE_8HZ = 2
  • BrickletIMUV3.MAGNETOMETER_RATE_10HZ = 3
  • BrickletIMUV3.MAGNETOMETER_RATE_15HZ = 4
  • BrickletIMUV3.MAGNETOMETER_RATE_20HZ = 5
  • BrickletIMUV3.MAGNETOMETER_RATE_25HZ = 6
  • BrickletIMUV3.MAGNETOMETER_RATE_30HZ = 7

For gyroscopeRange:

  • BrickletIMUV3.GYROSCOPE_RANGE_2000DPS = 0
  • BrickletIMUV3.GYROSCOPE_RANGE_1000DPS = 1
  • BrickletIMUV3.GYROSCOPE_RANGE_500DPS = 2
  • BrickletIMUV3.GYROSCOPE_RANGE_250DPS = 3
  • BrickletIMUV3.GYROSCOPE_RANGE_125DPS = 4

For gyroscopeBandwidth:

  • BrickletIMUV3.GYROSCOPE_BANDWIDTH_523HZ = 0
  • BrickletIMUV3.GYROSCOPE_BANDWIDTH_230HZ = 1
  • BrickletIMUV3.GYROSCOPE_BANDWIDTH_116HZ = 2
  • BrickletIMUV3.GYROSCOPE_BANDWIDTH_47HZ = 3
  • BrickletIMUV3.GYROSCOPE_BANDWIDTH_23HZ = 4
  • BrickletIMUV3.GYROSCOPE_BANDWIDTH_12HZ = 5
  • BrickletIMUV3.GYROSCOPE_BANDWIDTH_64HZ = 6
  • BrickletIMUV3.GYROSCOPE_BANDWIDTH_32HZ = 7

For accelerometerRange:

  • BrickletIMUV3.ACCELEROMETER_RANGE_2G = 0
  • BrickletIMUV3.ACCELEROMETER_RANGE_4G = 1
  • BrickletIMUV3.ACCELEROMETER_RANGE_8G = 2
  • BrickletIMUV3.ACCELEROMETER_RANGE_16G = 3

For accelerometerBandwidth:

  • BrickletIMUV3.ACCELEROMETER_BANDWIDTH_7_81HZ = 0
  • BrickletIMUV3.ACCELEROMETER_BANDWIDTH_15_63HZ = 1
  • BrickletIMUV3.ACCELEROMETER_BANDWIDTH_31_25HZ = 2
  • BrickletIMUV3.ACCELEROMETER_BANDWIDTH_62_5HZ = 3
  • BrickletIMUV3.ACCELEROMETER_BANDWIDTH_125HZ = 4
  • BrickletIMUV3.ACCELEROMETER_BANDWIDTH_250HZ = 5
  • BrickletIMUV3.ACCELEROMETER_BANDWIDTH_500HZ = 6
  • BrickletIMUV3.ACCELEROMETER_BANDWIDTH_1000HZ = 7
Sub BrickletIMUV3.GetSensorConfiguration(ByRef magnetometerRate As Byte, ByRef gyroscopeRange As Byte, ByRef gyroscopeBandwidth As Byte, ByRef accelerometerRange As Byte, ByRef accelerometerBandwidth As Byte)
Output Parameters:
  • magnetometerRate – Type: Byte, Range: See constants, Default: 5
  • gyroscopeRange – Type: Byte, Range: See constants, Default: 0
  • gyroscopeBandwidth – Type: Byte, Range: See constants, Default: 7
  • accelerometerRange – Type: Byte, Range: See constants, Default: 1
  • accelerometerBandwidth – Type: Byte, Range: See constants, Default: 3

Returns the sensor configuration as set by SetSensorConfiguration().

The following constants are available for this function:

For magnetometerRate:

  • BrickletIMUV3.MAGNETOMETER_RATE_2HZ = 0
  • BrickletIMUV3.MAGNETOMETER_RATE_6HZ = 1
  • BrickletIMUV3.MAGNETOMETER_RATE_8HZ = 2
  • BrickletIMUV3.MAGNETOMETER_RATE_10HZ = 3
  • BrickletIMUV3.MAGNETOMETER_RATE_15HZ = 4
  • BrickletIMUV3.MAGNETOMETER_RATE_20HZ = 5
  • BrickletIMUV3.MAGNETOMETER_RATE_25HZ = 6
  • BrickletIMUV3.MAGNETOMETER_RATE_30HZ = 7

For gyroscopeRange:

  • BrickletIMUV3.GYROSCOPE_RANGE_2000DPS = 0
  • BrickletIMUV3.GYROSCOPE_RANGE_1000DPS = 1
  • BrickletIMUV3.GYROSCOPE_RANGE_500DPS = 2
  • BrickletIMUV3.GYROSCOPE_RANGE_250DPS = 3
  • BrickletIMUV3.GYROSCOPE_RANGE_125DPS = 4

For gyroscopeBandwidth:

  • BrickletIMUV3.GYROSCOPE_BANDWIDTH_523HZ = 0
  • BrickletIMUV3.GYROSCOPE_BANDWIDTH_230HZ = 1
  • BrickletIMUV3.GYROSCOPE_BANDWIDTH_116HZ = 2
  • BrickletIMUV3.GYROSCOPE_BANDWIDTH_47HZ = 3
  • BrickletIMUV3.GYROSCOPE_BANDWIDTH_23HZ = 4
  • BrickletIMUV3.GYROSCOPE_BANDWIDTH_12HZ = 5
  • BrickletIMUV3.GYROSCOPE_BANDWIDTH_64HZ = 6
  • BrickletIMUV3.GYROSCOPE_BANDWIDTH_32HZ = 7

For accelerometerRange:

  • BrickletIMUV3.ACCELEROMETER_RANGE_2G = 0
  • BrickletIMUV3.ACCELEROMETER_RANGE_4G = 1
  • BrickletIMUV3.ACCELEROMETER_RANGE_8G = 2
  • BrickletIMUV3.ACCELEROMETER_RANGE_16G = 3

For accelerometerBandwidth:

  • BrickletIMUV3.ACCELEROMETER_BANDWIDTH_7_81HZ = 0
  • BrickletIMUV3.ACCELEROMETER_BANDWIDTH_15_63HZ = 1
  • BrickletIMUV3.ACCELEROMETER_BANDWIDTH_31_25HZ = 2
  • BrickletIMUV3.ACCELEROMETER_BANDWIDTH_62_5HZ = 3
  • BrickletIMUV3.ACCELEROMETER_BANDWIDTH_125HZ = 4
  • BrickletIMUV3.ACCELEROMETER_BANDWIDTH_250HZ = 5
  • BrickletIMUV3.ACCELEROMETER_BANDWIDTH_500HZ = 6
  • BrickletIMUV3.ACCELEROMETER_BANDWIDTH_1000HZ = 7
Sub BrickletIMUV3.SetSensorFusionMode(ByVal mode As Byte)
Parameters:
  • mode – Type: Byte, Range: See constants, Default: 1

If the fusion mode is turned off, the functions GetAcceleration(), GetMagneticField() and GetAngularVelocity() return uncalibrated and uncompensated sensor data. All other sensor data getters return no data.

Since firmware version 2.0.6 you can also use a fusion mode without magnetometer. In this mode the calculated orientation is relative (with magnetometer it is absolute with respect to the earth). However, the calculation can't be influenced by spurious magnetic fields.

Since firmware version 2.0.13 you can also use a fusion mode without fast magnetometer calibration. This mode is the same as the normal fusion mode, but the fast magnetometer calibration is turned off. So to find the orientation the first time will likely take longer, but small magnetic influences might not affect the automatic calibration as much.

The following constants are available for this function:

For mode:

  • BrickletIMUV3.SENSOR_FUSION_OFF = 0
  • BrickletIMUV3.SENSOR_FUSION_ON = 1
  • BrickletIMUV3.SENSOR_FUSION_ON_WITHOUT_MAGNETOMETER = 2
  • BrickletIMUV3.SENSOR_FUSION_ON_WITHOUT_FAST_MAGNETOMETER_CALIBRATION = 3
Function BrickletIMUV3.GetSensorFusionMode() As Byte
Returns:
  • mode – Type: Byte, Range: See constants, Default: 1

Returns the sensor fusion mode as set by SetSensorFusionMode().

The following constants are available for this function:

For mode:

  • BrickletIMUV3.SENSOR_FUSION_OFF = 0
  • BrickletIMUV3.SENSOR_FUSION_ON = 1
  • BrickletIMUV3.SENSOR_FUSION_ON_WITHOUT_MAGNETOMETER = 2
  • BrickletIMUV3.SENSOR_FUSION_ON_WITHOUT_FAST_MAGNETOMETER_CALIBRATION = 3
Sub BrickletIMUV3.GetSPITFPErrorCount(ByRef errorCountAckChecksum As Long, ByRef errorCountMessageChecksum As Long, ByRef errorCountFrame As Long, ByRef errorCountOverflow As Long)
Output Parameters:
  • errorCountAckChecksum – Type: Long, Range: [0 to 232 - 1]
  • errorCountMessageChecksum – Type: Long, Range: [0 to 232 - 1]
  • errorCountFrame – Type: Long, Range: [0 to 232 - 1]
  • errorCountOverflow – Type: Long, Range: [0 to 232 - 1]

Returns the error count for the communication between Brick and Bricklet.

The errors are divided into

  • ACK checksum errors,
  • message checksum errors,
  • framing errors and
  • overflow errors.

The errors counts are for errors that occur on the Bricklet side. All Bricks have a similar function that returns the errors on the Brick side.

Sub BrickletIMUV3.SetStatusLEDConfig(ByVal config As Byte)
Parameters:
  • config – Type: Byte, Range: See constants, Default: 3

Sets the status LED configuration. By default the LED shows communication traffic between Brick and Bricklet, it flickers once for every 10 received data packets.

You can also turn the LED permanently on/off or show a heartbeat.

If the Bricklet is in bootloader mode, the LED is will show heartbeat by default.

The following constants are available for this function:

For config:

  • BrickletIMUV3.STATUS_LED_CONFIG_OFF = 0
  • BrickletIMUV3.STATUS_LED_CONFIG_ON = 1
  • BrickletIMUV3.STATUS_LED_CONFIG_SHOW_HEARTBEAT = 2
  • BrickletIMUV3.STATUS_LED_CONFIG_SHOW_STATUS = 3
Function BrickletIMUV3.GetStatusLEDConfig() As Byte
Returns:
  • config – Type: Byte, Range: See constants, Default: 3

Returns the configuration as set by SetStatusLEDConfig()

The following constants are available for this function:

For config:

  • BrickletIMUV3.STATUS_LED_CONFIG_OFF = 0
  • BrickletIMUV3.STATUS_LED_CONFIG_ON = 1
  • BrickletIMUV3.STATUS_LED_CONFIG_SHOW_HEARTBEAT = 2
  • BrickletIMUV3.STATUS_LED_CONFIG_SHOW_STATUS = 3
Function BrickletIMUV3.GetChipTemperature() As Short
Returns:
  • temperature – Type: Short, Unit: 1 °C, Range: [-215 to 215 - 1]

Returns the temperature as measured inside the microcontroller. The value returned is not the ambient temperature!

The temperature is only proportional to the real temperature and it has bad accuracy. Practically it is only useful as an indicator for temperature changes.

Sub BrickletIMUV3.Reset()

Calling this function will reset the Bricklet. All configurations will be lost.

After a reset you have to create new device objects, calling functions on the existing ones will result in undefined behavior!

Sub BrickletIMUV3.GetIdentity(ByRef uid As String, ByRef connectedUid As String, ByRef position As Char, ByRef hardwareVersion() As Byte, ByRef firmwareVersion() As Byte, ByRef deviceIdentifier As Integer)
Output Parameters:
  • uid – Type: String, Length: up to 8
  • connectedUid – Type: String, Length: up to 8
  • position – Type: Char, Range: ["a"C to "h"C, "z"C]
  • hardwareVersion – Type: Byte Array, Length: 3
    • 0: major – Type: Byte, Range: [0 to 255]
    • 1: minor – Type: Byte, Range: [0 to 255]
    • 2: revision – Type: Byte, Range: [0 to 255]
  • firmwareVersion – Type: Byte Array, Length: 3
    • 0: major – Type: Byte, Range: [0 to 255]
    • 1: minor – Type: Byte, Range: [0 to 255]
    • 2: revision – Type: Byte, Range: [0 to 255]
  • deviceIdentifier – Type: Integer, Range: [0 to 216 - 1]

Returns the UID, the UID where the Bricklet is connected to, the position, the hardware and firmware version as well as the device identifier.

The position can be 'a', 'b', 'c', 'd', 'e', 'f', 'g' or 'h' (Bricklet Port). A Bricklet connected to an Isolator Bricklet is always at position 'z'.

The device identifier numbers can be found here. There is also a constant for the device identifier of this Bricklet.

Callback Configuration Functions

Sub BrickletIMUV3.SetAccelerationCallbackConfiguration(ByVal period As Long, ByVal valueHasToChange As Boolean)
Parameters:
  • period – Type: Long, Unit: 1 ms, Range: [0 to 232 - 1], Default: 0
  • valueHasToChange – Type: Boolean, Default: false

The period is the period with which the AccelerationCallback callback is triggered periodically. A value of 0 turns the callback off.

If the value has to change-parameter is set to true, the callback is only triggered after the value has changed. If the value didn't change within the period, the callback is triggered immediately on change.

If it is set to false, the callback is continuously triggered with the period, independent of the value.

Sub BrickletIMUV3.GetAccelerationCallbackConfiguration(ByRef period As Long, ByRef valueHasToChange As Boolean)
Output Parameters:
  • period – Type: Long, Unit: 1 ms, Range: [0 to 232 - 1], Default: 0
  • valueHasToChange – Type: Boolean, Default: false

Returns the callback configuration as set by SetAccelerationCallbackConfiguration().

Sub BrickletIMUV3.SetMagneticFieldCallbackConfiguration(ByVal period As Long, ByVal valueHasToChange As Boolean)
Parameters:
  • period – Type: Long, Unit: 1 ms, Range: [0 to 232 - 1], Default: 0
  • valueHasToChange – Type: Boolean, Default: false

The period is the period with which the MagneticFieldCallback callback is triggered periodically. A value of 0 turns the callback off.

If the value has to change-parameter is set to true, the callback is only triggered after the value has changed. If the value didn't change within the period, the callback is triggered immediately on change.

If it is set to false, the callback is continuously triggered with the period, independent of the value.

Sub BrickletIMUV3.GetMagneticFieldCallbackConfiguration(ByRef period As Long, ByRef valueHasToChange As Boolean)
Output Parameters:
  • period – Type: Long, Unit: 1 ms, Range: [0 to 232 - 1], Default: 0
  • valueHasToChange – Type: Boolean, Default: false

Returns the callback configuration as set by SetMagneticFieldCallbackConfiguration().

Sub BrickletIMUV3.SetAngularVelocityCallbackConfiguration(ByVal period As Long, ByVal valueHasToChange As Boolean)
Parameters:
  • period – Type: Long, Unit: 1 ms, Range: [0 to 232 - 1], Default: 0
  • valueHasToChange – Type: Boolean, Default: false

The period is the period with which the AngularVelocityCallback callback is triggered periodically. A value of 0 turns the callback off.

If the value has to change-parameter is set to true, the callback is only triggered after the value has changed. If the value didn't change within the period, the callback is triggered immediately on change.

If it is set to false, the callback is continuously triggered with the period, independent of the value.

Sub BrickletIMUV3.GetAngularVelocityCallbackConfiguration(ByRef period As Long, ByRef valueHasToChange As Boolean)
Output Parameters:
  • period – Type: Long, Unit: 1 ms, Range: [0 to 232 - 1], Default: 0
  • valueHasToChange – Type: Boolean, Default: false

Returns the callback configuration as set by SetAngularVelocityCallbackConfiguration().

Sub BrickletIMUV3.SetTemperatureCallbackConfiguration(ByVal period As Long, ByVal valueHasToChange As Boolean)
Parameters:
  • period – Type: Long, Unit: 1 ms, Range: [0 to 232 - 1], Default: 0
  • valueHasToChange – Type: Boolean, Default: false

The period is the period with which the TemperatureCallback callback is triggered periodically. A value of 0 turns the callback off.

If the value has to change-parameter is set to true, the callback is only triggered after the value has changed. If the value didn't change within the period, the callback is triggered immediately on change.

If it is set to false, the callback is continuously triggered with the period, independent of the value.

Sub BrickletIMUV3.GetTemperatureCallbackConfiguration(ByRef period As Long, ByRef valueHasToChange As Boolean)
Output Parameters:
  • period – Type: Long, Unit: 1 ms, Range: [0 to 232 - 1], Default: 0
  • valueHasToChange – Type: Boolean, Default: false

Returns the callback configuration as set by SetTemperatureCallbackConfiguration().

Sub BrickletIMUV3.SetOrientationCallbackConfiguration(ByVal period As Long, ByVal valueHasToChange As Boolean)
Parameters:
  • period – Type: Long, Unit: 1 ms, Range: [0 to 232 - 1], Default: 0
  • valueHasToChange – Type: Boolean, Default: false

The period is the period with which the OrientationCallback callback is triggered periodically. A value of 0 turns the callback off.

If the value has to change-parameter is set to true, the callback is only triggered after the value has changed. If the value didn't change within the period, the callback is triggered immediately on change.

If it is set to false, the callback is continuously triggered with the period, independent of the value.

Sub BrickletIMUV3.GetOrientationCallbackConfiguration(ByRef period As Long, ByRef valueHasToChange As Boolean)
Output Parameters:
  • period – Type: Long, Unit: 1 ms, Range: [0 to 232 - 1], Default: 0
  • valueHasToChange – Type: Boolean, Default: false

Returns the callback configuration as set by SetOrientationCallbackConfiguration().

Sub BrickletIMUV3.SetLinearAccelerationCallbackConfiguration(ByVal period As Long, ByVal valueHasToChange As Boolean)
Parameters:
  • period – Type: Long, Unit: 1 ms, Range: [0 to 232 - 1], Default: 0
  • valueHasToChange – Type: Boolean, Default: false

The period is the period with which the LinearAccelerationCallback callback is triggered periodically. A value of 0 turns the callback off.

If the value has to change-parameter is set to true, the callback is only triggered after the value has changed. If the value didn't change within the period, the callback is triggered immediately on change.

If it is set to false, the callback is continuously triggered with the period, independent of the value.

Sub BrickletIMUV3.GetLinearAccelerationCallbackConfiguration(ByRef period As Long, ByRef valueHasToChange As Boolean)
Output Parameters:
  • period – Type: Long, Unit: 1 ms, Range: [0 to 232 - 1], Default: 0
  • valueHasToChange – Type: Boolean, Default: false

Returns the callback configuration as set by SetLinearAccelerationCallbackConfiguration().

Sub BrickletIMUV3.SetGravityVectorCallbackConfiguration(ByVal period As Long, ByVal valueHasToChange As Boolean)
Parameters:
  • period – Type: Long, Unit: 1 ms, Range: [0 to 232 - 1], Default: 0
  • valueHasToChange – Type: Boolean, Default: false

The period is the period with which the GravityVectorCallback callback is triggered periodically. A value of 0 turns the callback off.

If the value has to change-parameter is set to true, the callback is only triggered after the value has changed. If the value didn't change within the period, the callback is triggered immediately on change.

If it is set to false, the callback is continuously triggered with the period, independent of the value.

Sub BrickletIMUV3.GetGravityVectorCallbackConfiguration(ByRef period As Long, ByRef valueHasToChange As Boolean)
Output Parameters:
  • period – Type: Long, Unit: 1 ms, Range: [0 to 232 - 1], Default: 0
  • valueHasToChange – Type: Boolean, Default: false

Returns the callback configuration as set by SetGravityVectorCallbackConfiguration().

Sub BrickletIMUV3.SetQuaternionCallbackConfiguration(ByVal period As Long, ByVal valueHasToChange As Boolean)
Parameters:
  • period – Type: Long, Unit: 1 ms, Range: [0 to 232 - 1], Default: 0
  • valueHasToChange – Type: Boolean, Default: false

The period is the period with which the QuaternionCallback callback is triggered periodically. A value of 0 turns the callback off.

If the value has to change-parameter is set to true, the callback is only triggered after the value has changed. If the value didn't change within the period, the callback is triggered immediately on change.

If it is set to false, the callback is continuously triggered with the period, independent of the value.

Sub BrickletIMUV3.GetQuaternionCallbackConfiguration(ByRef period As Long, ByRef valueHasToChange As Boolean)
Output Parameters:
  • period – Type: Long, Unit: 1 ms, Range: [0 to 232 - 1], Default: 0
  • valueHasToChange – Type: Boolean, Default: false

Returns the callback configuration as set by SetQuaternionCallbackConfiguration().

Sub BrickletIMUV3.SetAllDataCallbackConfiguration(ByVal period As Long, ByVal valueHasToChange As Boolean)
Parameters:
  • period – Type: Long, Unit: 1 ms, Range: [0 to 232 - 1], Default: 0
  • valueHasToChange – Type: Boolean, Default: false

The period is the period with which the AllDataCallback callback is triggered periodically. A value of 0 turns the callback off.

If the value has to change-parameter is set to true, the callback is only triggered after the value has changed. If the value didn't change within the period, the callback is triggered immediately on change.

If it is set to false, the callback is continuously triggered with the period, independent of the value.

Sub BrickletIMUV3.GetAllDataCallbackConfiguration(ByRef period As Long, ByRef valueHasToChange As Boolean)
Output Parameters:
  • period – Type: Long, Unit: 1 ms, Range: [0 to 232 - 1], Default: 0
  • valueHasToChange – Type: Boolean, Default: false

Returns the callback configuration as set by SetAllDataCallbackConfiguration().

Callbacks

Callbacks can be registered to receive time critical or recurring data from the device. The registration is done by assigning a procedure to an callback property of the device object:

Sub MyCallback(ByVal sender As BrickletIMUV3, ByVal value As Short)
    Console.WriteLine("Value: {0}", value)
End Sub

AddHandler imuV3.ExampleCallback, AddressOf MyCallback

The available callback property and their type of parameters are described below.

Note

Using callbacks for recurring events is always preferred compared to using getters. It will use less USB bandwidth and the latency will be a lot better, since there is no round trip time.

Event BrickletIMUV3.AccelerationCallback(ByVal sender As BrickletIMUV3, ByVal x As Short, ByVal y As Short, ByVal z As Short)
Callback Parameters:
  • sender – Type: BrickletIMUV3
  • x – Type: Short, Unit: 1 cm/s², Range: ?
  • y – Type: Short, Unit: 1 cm/s², Range: ?
  • z – Type: Short, Unit: 1 cm/s², Range: ?

This callback is triggered periodically with the period that is set by SetAccelerationCallbackConfiguration(). The parameters are the acceleration for the x, y and z axis.

Event BrickletIMUV3.MagneticFieldCallback(ByVal sender As BrickletIMUV3, ByVal x As Short, ByVal y As Short, ByVal z As Short)
Callback Parameters:
  • sender – Type: BrickletIMUV3
  • x – Type: Short, Unit: 1/16 µT, Range: [-20800 to 20800]
  • y – Type: Short, Unit: 1/16 µT, Range: [-20800 to 20800]
  • z – Type: Short, Unit: 1/16 µT, Range: [-40000 to 40000]

This callback is triggered periodically with the period that is set by SetMagneticFieldCallbackConfiguration(). The parameters are the magnetic field for the x, y and z axis.

Event BrickletIMUV3.AngularVelocityCallback(ByVal sender As BrickletIMUV3, ByVal x As Short, ByVal y As Short, ByVal z As Short)
Callback Parameters:
  • sender – Type: BrickletIMUV3
  • x – Type: Short, Unit: 1/16 °/s, Range: ?
  • y – Type: Short, Unit: 1/16 °/s, Range: ?
  • z – Type: Short, Unit: 1/16 °/s, Range: ?

This callback is triggered periodically with the period that is set by SetAngularVelocityCallbackConfiguration(). The parameters are the angular velocity for the x, y and z axis.

Event BrickletIMUV3.TemperatureCallback(ByVal sender As BrickletIMUV3, ByVal temperature As Short)
Callback Parameters:
  • sender – Type: BrickletIMUV3
  • temperature – Type: Short, Unit: 1 °C, Range: [-128 to 127]

This callback is triggered periodically with the period that is set by SetTemperatureCallbackConfiguration(). The parameter is the temperature.

Event BrickletIMUV3.LinearAccelerationCallback(ByVal sender As BrickletIMUV3, ByVal x As Short, ByVal y As Short, ByVal z As Short)
Callback Parameters:
  • sender – Type: BrickletIMUV3
  • x – Type: Short, Unit: 1 cm/s², Range: ?
  • y – Type: Short, Unit: 1 cm/s², Range: ?
  • z – Type: Short, Unit: 1 cm/s², Range: ?

This callback is triggered periodically with the period that is set by SetLinearAccelerationCallbackConfiguration(). The parameters are the linear acceleration for the x, y and z axis.

Event BrickletIMUV3.GravityVectorCallback(ByVal sender As BrickletIMUV3, ByVal x As Short, ByVal y As Short, ByVal z As Short)
Callback Parameters:
  • sender – Type: BrickletIMUV3
  • x – Type: Short, Unit: 1 cm/s², Range: [-981 to 981]
  • y – Type: Short, Unit: 1 cm/s², Range: [-981 to 981]
  • z – Type: Short, Unit: 1 cm/s², Range: [-981 to 981]

This callback is triggered periodically with the period that is set by SetGravityVectorCallbackConfiguration(). The parameters gravity vector for the x, y and z axis.

Event BrickletIMUV3.OrientationCallback(ByVal sender As BrickletIMUV3, ByVal heading As Short, ByVal roll As Short, ByVal pitch As Short)
Callback Parameters:
  • sender – Type: BrickletIMUV3
  • heading – Type: Short, Unit: 1/16 °, Range: [0 to 5760]
  • roll – Type: Short, Unit: 1/16 °, Range: [-1440 to 1440]
  • pitch – Type: Short, Unit: 1/16 °, Range: [-2880 to 2880]

This callback is triggered periodically with the period that is set by SetOrientationCallbackConfiguration(). The parameters are the orientation (heading (yaw), roll, pitch) of the IMU Brick in Euler angles. See GetOrientation() for details.

Event BrickletIMUV3.QuaternionCallback(ByVal sender As BrickletIMUV3, ByVal w As Short, ByVal x As Short, ByVal y As Short, ByVal z As Short)
Callback Parameters:
  • sender – Type: BrickletIMUV3
  • w – Type: Short, Unit: 1/16383, Range: [-214 + 1 to 214 - 1]
  • x – Type: Short, Unit: 1/16383, Range: [-214 + 1 to 214 - 1]
  • y – Type: Short, Unit: 1/16383, Range: [-214 + 1 to 214 - 1]
  • z – Type: Short, Unit: 1/16383, Range: [-214 + 1 to 214 - 1]

This callback is triggered periodically with the period that is set by SetQuaternionCallbackConfiguration(). The parameters are the orientation (w, x, y, z) of the IMU Brick in quaternions. See GetQuaternion() for details.

Event BrickletIMUV3.AllDataCallback(ByVal sender As BrickletIMUV3, ByVal acceleration() As Short, ByVal magneticField() As Short, ByVal angularVelocity() As Short, ByVal eulerAngle() As Short, ByVal quaternion() As Short, ByVal linearAcceleration() As Short, ByVal gravityVector() As Short, ByVal temperature As Short, ByVal calibrationStatus As Byte)
Callback Parameters:
  • sender – Type: BrickletIMUV3
  • acceleration – Type: Short Array, Length: 3
    • 0: x – Type: Short, Unit: 1 cm/s², Range: ?
    • 1: y – Type: Short, Unit: 1 cm/s², Range: ?
    • 2: z – Type: Short, Unit: 1 cm/s², Range: ?
  • magneticField – Type: Short Array, Length: 3
    • 0: x – Type: Short, Unit: 1/16 µT, Range: [-20800 to 20800]
    • 1: y – Type: Short, Unit: 1/16 µT, Range: [-20800 to 20800]
    • 2: z – Type: Short, Unit: 1/16 µT, Range: [-40000 to 40000]
  • angularVelocity – Type: Short Array, Length: 3
    • 0: x – Type: Short, Unit: 1/16 °/s, Range: ?
    • 1: y – Type: Short, Unit: 1/16 °/s, Range: ?
    • 2: z – Type: Short, Unit: 1/16 °/s, Range: ?
  • eulerAngle – Type: Short Array, Length: 3
    • 0: heading – Type: Short, Unit: 1/16 °, Range: [0 to 5760]
    • 1: roll – Type: Short, Unit: 1/16 °, Range: [-1440 to 1440]
    • 2: pitch – Type: Short, Unit: 1/16 °, Range: [-2880 to 2880]
  • quaternion – Type: Short Array, Length: 4
    • 0: w – Type: Short, Unit: 1/16383, Range: [-214 + 1 to 214 - 1]
    • 1: x – Type: Short, Unit: 1/16383, Range: [-214 + 1 to 214 - 1]
    • 2: y – Type: Short, Unit: 1/16383, Range: [-214 + 1 to 214 - 1]
    • 3: z – Type: Short, Unit: 1/16383, Range: [-214 + 1 to 214 - 1]
  • linearAcceleration – Type: Short Array, Length: 3
    • 0: x – Type: Short, Unit: 1 cm/s², Range: ?
    • 1: y – Type: Short, Unit: 1 cm/s², Range: ?
    • 2: z – Type: Short, Unit: 1 cm/s², Range: ?
  • gravityVector – Type: Short Array, Length: 3
    • 0: x – Type: Short, Unit: 1 cm/s², Range: ?
    • 1: y – Type: Short, Unit: 1 cm/s², Range: ?
    • 2: z – Type: Short, Unit: 1 cm/s², Range: ?
  • temperature – Type: Short, Unit: 1 °C, Range: [-128 to 127]
  • calibrationStatus – Type: Byte, Range: [0 to 255]

This callback is triggered periodically with the period that is set by SetAllDataCallbackConfiguration(). The parameters are as for GetAllData().

Virtual Functions

Virtual functions don't communicate with the device itself, but operate only on the API bindings device object. They can be called without the corresponding IP Connection object being connected.

Function BrickletIMUV3.GetAPIVersion() As Byte()
Output Parameters:
  • apiVersion – Type: Byte Array, Length: 3
    • 0: major – Type: Byte, Range: [0 to 255]
    • 1: minor – Type: Byte, Range: [0 to 255]
    • 2: revision – Type: Byte, Range: [0 to 255]

Returns the version of the API definition implemented by this API bindings. This is neither the release version of this API bindings nor does it tell you anything about the represented Brick or Bricklet.

Function BrickletIMUV3.GetResponseExpected(ByVal functionId As Byte) As Boolean
Parameters:
  • functionId – Type: Byte, Range: See constants
Returns:
  • responseExpected – Type: Boolean

Returns the response expected flag for the function specified by the function ID parameter. It is true if the function is expected to send a response, false otherwise.

For getter functions this is enabled by default and cannot be disabled, because those functions will always send a response. For callback configuration functions it is enabled by default too, but can be disabled by SetResponseExpected(). For setter functions it is disabled by default and can be enabled.

Enabling the response expected flag for a setter function allows to detect timeouts and other error conditions calls of this setter as well. The device will then send a response for this purpose. If this flag is disabled for a setter function then no response is sent and errors are silently ignored, because they cannot be detected.

The following constants are available for this function:

For functionId:

  • BrickletIMUV3.FUNCTION_SET_SENSOR_CONFIGURATION = 11
  • BrickletIMUV3.FUNCTION_SET_SENSOR_FUSION_MODE = 13
  • BrickletIMUV3.FUNCTION_SET_ACCELERATION_CALLBACK_CONFIGURATION = 15
  • BrickletIMUV3.FUNCTION_SET_MAGNETIC_FIELD_CALLBACK_CONFIGURATION = 17
  • BrickletIMUV3.FUNCTION_SET_ANGULAR_VELOCITY_CALLBACK_CONFIGURATION = 19
  • BrickletIMUV3.FUNCTION_SET_TEMPERATURE_CALLBACK_CONFIGURATION = 21
  • BrickletIMUV3.FUNCTION_SET_ORIENTATION_CALLBACK_CONFIGURATION = 23
  • BrickletIMUV3.FUNCTION_SET_LINEAR_ACCELERATION_CALLBACK_CONFIGURATION = 25
  • BrickletIMUV3.FUNCTION_SET_GRAVITY_VECTOR_CALLBACK_CONFIGURATION = 27
  • BrickletIMUV3.FUNCTION_SET_QUATERNION_CALLBACK_CONFIGURATION = 29
  • BrickletIMUV3.FUNCTION_SET_ALL_DATA_CALLBACK_CONFIGURATION = 31
  • BrickletIMUV3.FUNCTION_SET_WRITE_FIRMWARE_POINTER = 237
  • BrickletIMUV3.FUNCTION_SET_STATUS_LED_CONFIG = 239
  • BrickletIMUV3.FUNCTION_RESET = 243
  • BrickletIMUV3.FUNCTION_WRITE_UID = 248
Sub BrickletIMUV3.SetResponseExpected(ByVal functionId As Byte, ByVal responseExpected As Boolean)
Parameters:
  • functionId – Type: Byte, Range: See constants
  • responseExpected – Type: Boolean

Changes the response expected flag of the function specified by the function ID parameter. This flag can only be changed for setter (default value: false) and callback configuration functions (default value: true). For getter functions it is always enabled.

Enabling the response expected flag for a setter function allows to detect timeouts and other error conditions calls of this setter as well. The device will then send a response for this purpose. If this flag is disabled for a setter function then no response is sent and errors are silently ignored, because they cannot be detected.

The following constants are available for this function:

For functionId:

  • BrickletIMUV3.FUNCTION_SET_SENSOR_CONFIGURATION = 11
  • BrickletIMUV3.FUNCTION_SET_SENSOR_FUSION_MODE = 13
  • BrickletIMUV3.FUNCTION_SET_ACCELERATION_CALLBACK_CONFIGURATION = 15
  • BrickletIMUV3.FUNCTION_SET_MAGNETIC_FIELD_CALLBACK_CONFIGURATION = 17
  • BrickletIMUV3.FUNCTION_SET_ANGULAR_VELOCITY_CALLBACK_CONFIGURATION = 19
  • BrickletIMUV3.FUNCTION_SET_TEMPERATURE_CALLBACK_CONFIGURATION = 21
  • BrickletIMUV3.FUNCTION_SET_ORIENTATION_CALLBACK_CONFIGURATION = 23
  • BrickletIMUV3.FUNCTION_SET_LINEAR_ACCELERATION_CALLBACK_CONFIGURATION = 25
  • BrickletIMUV3.FUNCTION_SET_GRAVITY_VECTOR_CALLBACK_CONFIGURATION = 27
  • BrickletIMUV3.FUNCTION_SET_QUATERNION_CALLBACK_CONFIGURATION = 29
  • BrickletIMUV3.FUNCTION_SET_ALL_DATA_CALLBACK_CONFIGURATION = 31
  • BrickletIMUV3.FUNCTION_SET_WRITE_FIRMWARE_POINTER = 237
  • BrickletIMUV3.FUNCTION_SET_STATUS_LED_CONFIG = 239
  • BrickletIMUV3.FUNCTION_RESET = 243
  • BrickletIMUV3.FUNCTION_WRITE_UID = 248
Sub BrickletIMUV3.SetResponseExpectedAll(ByVal responseExpected As Boolean)
Parameters:
  • responseExpected – Type: Boolean

Changes the response expected flag for all setter and callback configuration functions of this device at once.

Internal Functions

Internal functions are used for maintenance tasks such as flashing a new firmware of changing the UID of a Bricklet. These task should be performed using Brick Viewer instead of using the internal functions directly.

Function BrickletIMUV3.SetBootloaderMode(ByVal mode As Byte) As Byte
Parameters:
  • mode – Type: Byte, Range: See constants
Returns:
  • status – Type: Byte, Range: See constants

Sets the bootloader mode and returns the status after the requested mode change was instigated.

You can change from bootloader mode to firmware mode and vice versa. A change from bootloader mode to firmware mode will only take place if the entry function, device identifier and CRC are present and correct.

This function is used by Brick Viewer during flashing. It should not be necessary to call it in a normal user program.

The following constants are available for this function:

For mode:

  • BrickletIMUV3.BOOTLOADER_MODE_BOOTLOADER = 0
  • BrickletIMUV3.BOOTLOADER_MODE_FIRMWARE = 1
  • BrickletIMUV3.BOOTLOADER_MODE_BOOTLOADER_WAIT_FOR_REBOOT = 2
  • BrickletIMUV3.BOOTLOADER_MODE_FIRMWARE_WAIT_FOR_REBOOT = 3
  • BrickletIMUV3.BOOTLOADER_MODE_FIRMWARE_WAIT_FOR_ERASE_AND_REBOOT = 4

For status:

  • BrickletIMUV3.BOOTLOADER_STATUS_OK = 0
  • BrickletIMUV3.BOOTLOADER_STATUS_INVALID_MODE = 1
  • BrickletIMUV3.BOOTLOADER_STATUS_NO_CHANGE = 2
  • BrickletIMUV3.BOOTLOADER_STATUS_ENTRY_FUNCTION_NOT_PRESENT = 3
  • BrickletIMUV3.BOOTLOADER_STATUS_DEVICE_IDENTIFIER_INCORRECT = 4
  • BrickletIMUV3.BOOTLOADER_STATUS_CRC_MISMATCH = 5
Function BrickletIMUV3.GetBootloaderMode() As Byte
Returns:
  • mode – Type: Byte, Range: See constants

Returns the current bootloader mode, see SetBootloaderMode().

The following constants are available for this function:

For mode:

  • BrickletIMUV3.BOOTLOADER_MODE_BOOTLOADER = 0
  • BrickletIMUV3.BOOTLOADER_MODE_FIRMWARE = 1
  • BrickletIMUV3.BOOTLOADER_MODE_BOOTLOADER_WAIT_FOR_REBOOT = 2
  • BrickletIMUV3.BOOTLOADER_MODE_FIRMWARE_WAIT_FOR_REBOOT = 3
  • BrickletIMUV3.BOOTLOADER_MODE_FIRMWARE_WAIT_FOR_ERASE_AND_REBOOT = 4
Sub BrickletIMUV3.SetWriteFirmwarePointer(ByVal pointer As Long)
Parameters:
  • pointer – Type: Long, Unit: 1 B, Range: [0 to 232 - 1]

Sets the firmware pointer for WriteFirmware(). The pointer has to be increased by chunks of size 64. The data is written to flash every 4 chunks (which equals to one page of size 256).

This function is used by Brick Viewer during flashing. It should not be necessary to call it in a normal user program.

Function BrickletIMUV3.WriteFirmware(ByVal data() As Byte) As Byte
Parameters:
  • data – Type: Byte Array, Length: 64, Range: [0 to 255]
Returns:
  • status – Type: Byte, Range: [0 to 255]

Writes 64 Bytes of firmware at the position as written by SetWriteFirmwarePointer() before. The firmware is written to flash every 4 chunks.

You can only write firmware in bootloader mode.

This function is used by Brick Viewer during flashing. It should not be necessary to call it in a normal user program.

Sub BrickletIMUV3.WriteUID(ByVal uid As Long)
Parameters:
  • uid – Type: Long, Range: [0 to 232 - 1]

Writes a new UID into flash. If you want to set a new UID you have to decode the Base58 encoded UID string into an integer first.

We recommend that you use Brick Viewer to change the UID.

Function BrickletIMUV3.ReadUID() As Long
Returns:
  • uid – Type: Long, Range: [0 to 232 - 1]

Returns the current UID as an integer. Encode as Base58 to get the usual string version.

Constants

Const BrickletIMUV3.DEVICE_IDENTIFIER

This constant is used to identify a IMU Bricklet 3.0.

The GetIdentity() function and the IPConnection.EnumerateCallback callback of the IP Connection have a deviceIdentifier parameter to specify the Brick's or Bricklet's type.

Const BrickletIMUV3.DEVICE_DISPLAY_NAME

This constant represents the human readable name of a IMU Bricklet 3.0.