Visual Basic .NET - Real-Time Clock Bricklet 2.0

This is the description of the Visual Basic .NET API bindings for the Real-Time Clock Bricklet 2.0. General information and technical specifications for the Real-Time Clock Bricklet 2.0 are summarized in its hardware description.

An installation guide for the Visual Basic .NET API bindings is part of their general description.

Examples

The example code below is Public Domain (CC0 1.0).

Simple

Download (ExampleSimple.vb)

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
Imports System
Imports Tinkerforge

Module ExampleSimple
    Const HOST As String = "localhost"
    Const PORT As Integer = 4223
    Const UID As String = "XYZ" ' Change XYZ to the UID of your Real-Time Clock Bricklet 2.0

    Sub Main()
        Dim ipcon As New IPConnection() ' Create IP connection
        Dim rtc As New BrickletRealTimeClockV2(UID, ipcon) ' Create device object

        ipcon.Connect(HOST, PORT) ' Connect to brickd
        ' Don't use device before ipcon is connected

        ' Get current date and time
        Dim year As Integer
        Dim month, day, hour, minute, second, centisecond, weekday As Byte
        Dim timestamp As Long

        rtc.GetDateTime(year, month, day, hour, minute, second, centisecond, weekday, _
                        timestamp)

        Console.WriteLine("Year: " + year.ToString())
        Console.WriteLine("Month: " + month.ToString())
        Console.WriteLine("Day: " + day.ToString())
        Console.WriteLine("Hour: " + hour.ToString())
        Console.WriteLine("Minute: " + minute.ToString())
        Console.WriteLine("Second: " + second.ToString())
        Console.WriteLine("Centisecond: " + centisecond.ToString())

        If weekday = BrickletRealTimeClockV2.WEEKDAY_MONDAY Then
            Console.WriteLine("Weekday: Monday")
        Else If weekday = BrickletRealTimeClockV2.WEEKDAY_TUESDAY Then
            Console.WriteLine("Weekday: Tuesday")
        Else If weekday = BrickletRealTimeClockV2.WEEKDAY_WEDNESDAY Then
            Console.WriteLine("Weekday: Wednesday")
        Else If weekday = BrickletRealTimeClockV2.WEEKDAY_THURSDAY Then
            Console.WriteLine("Weekday: Thursday")
        Else If weekday = BrickletRealTimeClockV2.WEEKDAY_FRIDAY Then
            Console.WriteLine("Weekday: Friday")
        Else If weekday = BrickletRealTimeClockV2.WEEKDAY_SATURDAY Then
            Console.WriteLine("Weekday: Saturday")
        Else If weekday = BrickletRealTimeClockV2.WEEKDAY_SUNDAY Then
            Console.WriteLine("Weekday: Sunday")
        End If

        Console.WriteLine("Timestamp: " + timestamp.ToString() + " ms")

        Console.WriteLine("Press key to exit")
        Console.ReadLine()
        ipcon.Disconnect()
    End Sub
End Module

Callback

Download (ExampleCallback.vb)

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Imports System
Imports Tinkerforge

Module ExampleCallback
    Const HOST As String = "localhost"
    Const PORT As Integer = 4223
    Const UID As String = "XYZ" ' Change XYZ to the UID of your Real-Time Clock Bricklet 2.0

    ' Callback subroutine for date and time callback
    Sub DateTimeCB(ByVal sender As BrickletRealTimeClockV2, ByVal year As Integer, _
                   ByVal month As Byte, ByVal day As Byte, ByVal hour As Byte, _
                   ByVal minute As Byte, ByVal second As Byte, _
                   ByVal centisecond As Byte, ByVal weekday As Byte, _
                   ByVal timestamp As Long)
        Console.WriteLine("Year: " + year.ToString())
        Console.WriteLine("Month: " + month.ToString())
        Console.WriteLine("Day: " + day.ToString())
        Console.WriteLine("Hour: " + hour.ToString())
        Console.WriteLine("Minute: " + minute.ToString())
        Console.WriteLine("Second: " + second.ToString())
        Console.WriteLine("Centisecond: " + centisecond.ToString())

        If weekday = BrickletRealTimeClockV2.WEEKDAY_MONDAY Then
            Console.WriteLine("Weekday: Monday")
        Else If weekday = BrickletRealTimeClockV2.WEEKDAY_TUESDAY Then
            Console.WriteLine("Weekday: Tuesday")
        Else If weekday = BrickletRealTimeClockV2.WEEKDAY_WEDNESDAY Then
            Console.WriteLine("Weekday: Wednesday")
        Else If weekday = BrickletRealTimeClockV2.WEEKDAY_THURSDAY Then
            Console.WriteLine("Weekday: Thursday")
        Else If weekday = BrickletRealTimeClockV2.WEEKDAY_FRIDAY Then
            Console.WriteLine("Weekday: Friday")
        Else If weekday = BrickletRealTimeClockV2.WEEKDAY_SATURDAY Then
            Console.WriteLine("Weekday: Saturday")
        Else If weekday = BrickletRealTimeClockV2.WEEKDAY_SUNDAY Then
            Console.WriteLine("Weekday: Sunday")
        End If

        Console.WriteLine("Timestamp: " + timestamp.ToString())
        Console.WriteLine("")
    End Sub

    Sub Main()
        Dim ipcon As New IPConnection() ' Create IP connection
        Dim rtc As New BrickletRealTimeClockV2(UID, ipcon) ' Create device object

        ipcon.Connect(HOST, PORT) ' Connect to brickd
        ' Don't use device before ipcon is connected

        ' Register date and time callback to subroutine DateTimeCB
        AddHandler rtc.DateTimeCallback, AddressOf DateTimeCB

        ' Set period for date and time callback to 5s (5000ms)
        rtc.SetDateTimeCallbackConfiguration(5000)

        Console.WriteLine("Press key to exit")
        Console.ReadLine()
        ipcon.Disconnect()
    End Sub
End Module

API

Since Visual Basic .NET does not support multiple return values directly, we use the ByRef keyword to return multiple values from a function.

All functions and procedures listed below are thread-safe.

Basic Functions

Class BrickletRealTimeClockV2(ByVal uid As String, ByVal ipcon As IPConnection)

Creates an object with the unique device ID uid:

Dim realTimeClockV2 As New BrickletRealTimeClockV2("YOUR_DEVICE_UID", ipcon)

This object can then be used after the IP Connection is connected.

Sub BrickletRealTimeClockV2.SetDateTime(ByVal year As Integer, ByVal month As Byte, ByVal day As Byte, ByVal hour As Byte, ByVal minute As Byte, ByVal second As Byte, ByVal centisecond As Byte, ByVal weekday As Byte)
Parameters:
  • year – Type: Integer, Range: [2000 to 2099]
  • month – Type: Byte, Range: [1 to 12]
  • day – Type: Byte, Range: [1 to 31]
  • hour – Type: Byte, Range: [0 to 23]
  • minute – Type: Byte, Range: [0 to 59]
  • second – Type: Byte, Range: [0 to 59]
  • centisecond – Type: Byte, Range: [0 to 99]
  • weekday – Type: Byte, Range: See constants

Sets the current date (including weekday) and the current time.

If the backup battery is installed then the real-time clock keeps date and time even if the Bricklet is not powered by a Brick.

The real-time clock handles leap year and inserts the 29th of February accordingly. But leap seconds, time zones and daylight saving time are not handled.

The following constants are available for this function:

For weekday:

  • BrickletRealTimeClockV2.WEEKDAY_MONDAY = 1
  • BrickletRealTimeClockV2.WEEKDAY_TUESDAY = 2
  • BrickletRealTimeClockV2.WEEKDAY_WEDNESDAY = 3
  • BrickletRealTimeClockV2.WEEKDAY_THURSDAY = 4
  • BrickletRealTimeClockV2.WEEKDAY_FRIDAY = 5
  • BrickletRealTimeClockV2.WEEKDAY_SATURDAY = 6
  • BrickletRealTimeClockV2.WEEKDAY_SUNDAY = 7
Sub BrickletRealTimeClockV2.GetDateTime(ByRef year As Integer, ByRef month As Byte, ByRef day As Byte, ByRef hour As Byte, ByRef minute As Byte, ByRef second As Byte, ByRef centisecond As Byte, ByRef weekday As Byte, ByRef timestamp As Long)
Output Parameters:
  • year – Type: Integer, Range: [2000 to 2099]
  • month – Type: Byte, Range: [1 to 12]
  • day – Type: Byte, Range: [1 to 31]
  • hour – Type: Byte, Range: [0 to 23]
  • minute – Type: Byte, Range: [0 to 59]
  • second – Type: Byte, Range: [0 to 59]
  • centisecond – Type: Byte, Range: [0 to 99]
  • weekday – Type: Byte, Range: See constants
  • timestamp – Type: Long, Unit: 1 ms, Range: [-263 to 263 - 1]

Returns the current date (including weekday) and the current time of the real-time.

The timestamp represents the current date and the the current time of the real-time clock converted to milliseconds and is an offset to 2000-01-01 00:00:00.0000.

The following constants are available for this function:

For weekday:

  • BrickletRealTimeClockV2.WEEKDAY_MONDAY = 1
  • BrickletRealTimeClockV2.WEEKDAY_TUESDAY = 2
  • BrickletRealTimeClockV2.WEEKDAY_WEDNESDAY = 3
  • BrickletRealTimeClockV2.WEEKDAY_THURSDAY = 4
  • BrickletRealTimeClockV2.WEEKDAY_FRIDAY = 5
  • BrickletRealTimeClockV2.WEEKDAY_SATURDAY = 6
  • BrickletRealTimeClockV2.WEEKDAY_SUNDAY = 7
Function BrickletRealTimeClockV2.GetTimestamp() As Long
Returns:
  • timestamp – Type: Long, Unit: 1 ms, Range: [-263 to 263 - 1]

Returns the current date and the time of the real-time clock converted to milliseconds. The timestamp has an effective resolution of hundredths of a second and is an offset to 2000-01-01 00:00:00.0000.

Advanced Functions

Sub BrickletRealTimeClockV2.SetOffset(ByVal offset As Short)
Parameters:
  • offset – Type: Short, Unit: 217/100 ppm, Range: [-128 to 127]

Sets the offset the real-time clock should compensate for in 2.17 ppm steps between -277.76 ppm (-128) and +275.59 ppm (127).

The real-time clock time can deviate from the actual time due to the frequency deviation of its 32.768 kHz crystal. Even without compensation (factory default) the resulting time deviation should be at most ±20 ppm (±52.6 seconds per month).

This deviation can be calculated by comparing the same duration measured by the real-time clock (rtc_duration) an accurate reference clock (ref_duration).

For best results the configured offset should be set to 0 ppm first and then a duration of at least 6 hours should be measured.

The new offset (new_offset) can be calculated from the currently configured offset (current_offset) and the measured durations as follow:

new_offset = current_offset - round(1000000 * (rtc_duration - ref_duration) / rtc_duration / 2.17)

If you want to calculate the offset, then we recommend using the calibration dialog in Brick Viewer, instead of doing it manually.

The offset is saved in the EEPROM of the Bricklet and only needs to be configured once.

Function BrickletRealTimeClockV2.GetOffset() As Short
Returns:
  • offset – Type: Short, Unit: 217/100 ppm, Range: [-128 to 127]

Returns the offset as set by SetOffset().

Sub BrickletRealTimeClockV2.GetSPITFPErrorCount(ByRef errorCountAckChecksum As Long, ByRef errorCountMessageChecksum As Long, ByRef errorCountFrame As Long, ByRef errorCountOverflow As Long)
Output Parameters:
  • errorCountAckChecksum – Type: Long, Range: [0 to 232 - 1]
  • errorCountMessageChecksum – Type: Long, Range: [0 to 232 - 1]
  • errorCountFrame – Type: Long, Range: [0 to 232 - 1]
  • errorCountOverflow – Type: Long, Range: [0 to 232 - 1]

Returns the error count for the communication between Brick and Bricklet.

The errors are divided into

  • ACK checksum errors,
  • message checksum errors,
  • framing errors and
  • overflow errors.

The errors counts are for errors that occur on the Bricklet side. All Bricks have a similar function that returns the errors on the Brick side.

Sub BrickletRealTimeClockV2.SetStatusLEDConfig(ByVal config As Byte)
Parameters:
  • config – Type: Byte, Range: See constants, Default: 3

Sets the status LED configuration. By default the LED shows communication traffic between Brick and Bricklet, it flickers once for every 10 received data packets.

You can also turn the LED permanently on/off or show a heartbeat.

If the Bricklet is in bootloader mode, the LED is will show heartbeat by default.

The following constants are available for this function:

For config:

  • BrickletRealTimeClockV2.STATUS_LED_CONFIG_OFF = 0
  • BrickletRealTimeClockV2.STATUS_LED_CONFIG_ON = 1
  • BrickletRealTimeClockV2.STATUS_LED_CONFIG_SHOW_HEARTBEAT = 2
  • BrickletRealTimeClockV2.STATUS_LED_CONFIG_SHOW_STATUS = 3
Function BrickletRealTimeClockV2.GetStatusLEDConfig() As Byte
Returns:
  • config – Type: Byte, Range: See constants, Default: 3

Returns the configuration as set by SetStatusLEDConfig()

The following constants are available for this function:

For config:

  • BrickletRealTimeClockV2.STATUS_LED_CONFIG_OFF = 0
  • BrickletRealTimeClockV2.STATUS_LED_CONFIG_ON = 1
  • BrickletRealTimeClockV2.STATUS_LED_CONFIG_SHOW_HEARTBEAT = 2
  • BrickletRealTimeClockV2.STATUS_LED_CONFIG_SHOW_STATUS = 3
Function BrickletRealTimeClockV2.GetChipTemperature() As Short
Returns:
  • temperature – Type: Short, Unit: 1 °C, Range: [-215 to 215 - 1]

Returns the temperature as measured inside the microcontroller. The value returned is not the ambient temperature!

The temperature is only proportional to the real temperature and it has bad accuracy. Practically it is only useful as an indicator for temperature changes.

Sub BrickletRealTimeClockV2.Reset()

Calling this function will reset the Bricklet. All configurations will be lost.

After a reset you have to create new device objects, calling functions on the existing ones will result in undefined behavior!

Sub BrickletRealTimeClockV2.GetIdentity(ByRef uid As String, ByRef connectedUid As String, ByRef position As Char, ByRef hardwareVersion() As Byte, ByRef firmwareVersion() As Byte, ByRef deviceIdentifier As Integer)
Output Parameters:
  • uid – Type: String, Length: up to 8
  • connectedUid – Type: String, Length: up to 8
  • position – Type: Char, Range: ["a"C to "h"C, "z"C]
  • hardwareVersion – Type: Byte Array, Length: 3
    • 0: major – Type: Byte, Range: [0 to 255]
    • 1: minor – Type: Byte, Range: [0 to 255]
    • 2: revision – Type: Byte, Range: [0 to 255]
  • firmwareVersion – Type: Byte Array, Length: 3
    • 0: major – Type: Byte, Range: [0 to 255]
    • 1: minor – Type: Byte, Range: [0 to 255]
    • 2: revision – Type: Byte, Range: [0 to 255]
  • deviceIdentifier – Type: Integer, Range: [0 to 216 - 1]

Returns the UID, the UID where the Bricklet is connected to, the position, the hardware and firmware version as well as the device identifier.

The position can be 'a', 'b', 'c', 'd', 'e', 'f', 'g' or 'h' (Bricklet Port). A Bricklet connected to an Isolator Bricklet is always at position 'z'.

The device identifier numbers can be found here. There is also a constant for the device identifier of this Bricklet.

Callback Configuration Functions

Sub BrickletRealTimeClockV2.SetDateTimeCallbackConfiguration(ByVal period As Long)
Parameters:
  • period – Type: Long, Unit: 1 ms, Range: [0 to 232 - 1], Default: 0

Sets the period with which the DateTimeCallback callback is triggered periodically. A value of 0 turns the callback off.

Function BrickletRealTimeClockV2.GetDateTimeCallbackConfiguration() As Long
Returns:
  • period – Type: Long, Unit: 1 ms, Range: [0 to 232 - 1], Default: 0

Returns the period as set by SetDateTimeCallbackConfiguration().

Sub BrickletRealTimeClockV2.SetAlarm(ByVal month As Short, ByVal day As Short, ByVal hour As Short, ByVal minute As Short, ByVal second As Short, ByVal weekday As Short, ByVal interval As Integer)
Parameters:
  • month – Type: Short, Range: [-1, 1 to 12] with constants
  • day – Type: Short, Range: [-1, 1 to 31] with constants
  • hour – Type: Short, Range: [-1, 0 to 23] with constants
  • minute – Type: Short, Range: [-1, 0 to 59] with constants
  • second – Type: Short, Range: [-1, 0 to 59] with constants
  • weekday – Type: Short, Range: [-1, 1 to 7] with constants
  • interval – Type: Integer, Unit: 1 s, Range: [-1, 1 to 231 - 1] with constants

Configures a repeatable alarm. The AlarmCallback callback is triggered if the current date and time matches the configured alarm.

Setting a parameter to -1 means that it should be disabled and doesn't take part in the match. Setting all parameters to -1 disables the alarm completely.

For example, to make the alarm trigger every day at 7:30 AM it can be configured as (-1, -1, 7, 30, -1, -1, -1). The hour is set to match 7 and the minute is set to match 30. The alarm is triggered if all enabled parameters match.

The interval has a special role. It allows to make the alarm reconfigure itself. This is useful if you need a repeated alarm that cannot be expressed by matching the current date and time. For example, to make the alarm trigger every 23 seconds it can be configured as (-1, -1, -1, -1, -1, -1, 23). Internally the Bricklet will take the current date and time, add 23 seconds to it and set the result as its alarm. The first alarm will be triggered 23 seconds after the call. Because the interval is not -1, the Bricklet will do the same again internally, take the current date and time, add 23 seconds to it and set that as its alarm. This results in a repeated alarm that triggers every 23 seconds.

The interval can also be used in combination with the other parameters. For example, configuring the alarm as (-1, -1, 7, 30, -1, -1, 300) results in an alarm that triggers every day at 7:30 AM and is then repeated every 5 minutes.

The following constants are available for this function:

For month:

  • BrickletRealTimeClockV2.ALARM_MATCH_DISABLED = -1

For day:

  • BrickletRealTimeClockV2.ALARM_MATCH_DISABLED = -1

For hour:

  • BrickletRealTimeClockV2.ALARM_MATCH_DISABLED = -1

For minute:

  • BrickletRealTimeClockV2.ALARM_MATCH_DISABLED = -1

For second:

  • BrickletRealTimeClockV2.ALARM_MATCH_DISABLED = -1

For weekday:

  • BrickletRealTimeClockV2.ALARM_MATCH_DISABLED = -1

For interval:

  • BrickletRealTimeClockV2.ALARM_INTERVAL_DISABLED = -1
Sub BrickletRealTimeClockV2.GetAlarm(ByRef month As Short, ByRef day As Short, ByRef hour As Short, ByRef minute As Short, ByRef second As Short, ByRef weekday As Short, ByRef interval As Integer)
Output Parameters:
  • month – Type: Short, Range: [-1, 1 to 12] with constants
  • day – Type: Short, Range: [-1, 1 to 31] with constants
  • hour – Type: Short, Range: [-1, 0 to 23] with constants
  • minute – Type: Short, Range: [-1, 0 to 59] with constants
  • second – Type: Short, Range: [-1, 0 to 59] with constants
  • weekday – Type: Short, Range: [-1, 1 to 7] with constants
  • interval – Type: Integer, Unit: 1 s, Range: [-1, 1 to 231 - 1] with constants

Returns the alarm configuration as set by SetAlarm().

The following constants are available for this function:

For month:

  • BrickletRealTimeClockV2.ALARM_MATCH_DISABLED = -1

For day:

  • BrickletRealTimeClockV2.ALARM_MATCH_DISABLED = -1

For hour:

  • BrickletRealTimeClockV2.ALARM_MATCH_DISABLED = -1

For minute:

  • BrickletRealTimeClockV2.ALARM_MATCH_DISABLED = -1

For second:

  • BrickletRealTimeClockV2.ALARM_MATCH_DISABLED = -1

For weekday:

  • BrickletRealTimeClockV2.ALARM_MATCH_DISABLED = -1

For interval:

  • BrickletRealTimeClockV2.ALARM_INTERVAL_DISABLED = -1

Callbacks

Callbacks can be registered to receive time critical or recurring data from the device. The registration is done by assigning a procedure to an callback property of the device object:

Sub MyCallback(ByVal sender As BrickletRealTimeClockV2, ByVal value As Short)
    Console.WriteLine("Value: {0}", value)
End Sub

AddHandler realTimeClockV2.ExampleCallback, AddressOf MyCallback

The available callback property and their type of parameters are described below.

Note

Using callbacks for recurring events is always preferred compared to using getters. It will use less USB bandwidth and the latency will be a lot better, since there is no round trip time.

Event BrickletRealTimeClockV2.DateTimeCallback(ByVal sender As BrickletRealTimeClockV2, ByVal year As Integer, ByVal month As Byte, ByVal day As Byte, ByVal hour As Byte, ByVal minute As Byte, ByVal second As Byte, ByVal centisecond As Byte, ByVal weekday As Byte, ByVal timestamp As Long)
Callback Parameters:
  • sender – Type: BrickletRealTimeClockV2
  • year – Type: Integer, Range: [2000 to 2099]
  • month – Type: Byte, Range: [1 to 12]
  • day – Type: Byte, Range: [1 to 31]
  • hour – Type: Byte, Range: [0 to 23]
  • minute – Type: Byte, Range: [0 to 59]
  • second – Type: Byte, Range: [0 to 59]
  • centisecond – Type: Byte, Range: [0 to 99]
  • weekday – Type: Byte, Range: See constants
  • timestamp – Type: Long, Unit: 1 ms, Range: [-263 to 263 - 1]

This callback is triggered periodically with the period that is set by SetDateTimeCallbackConfiguration(). The parameters are the same as for GetDateTime().

The following constants are available for this function:

For weekday:

  • BrickletRealTimeClockV2.WEEKDAY_MONDAY = 1
  • BrickletRealTimeClockV2.WEEKDAY_TUESDAY = 2
  • BrickletRealTimeClockV2.WEEKDAY_WEDNESDAY = 3
  • BrickletRealTimeClockV2.WEEKDAY_THURSDAY = 4
  • BrickletRealTimeClockV2.WEEKDAY_FRIDAY = 5
  • BrickletRealTimeClockV2.WEEKDAY_SATURDAY = 6
  • BrickletRealTimeClockV2.WEEKDAY_SUNDAY = 7
Event BrickletRealTimeClockV2.AlarmCallback(ByVal sender As BrickletRealTimeClockV2, ByVal year As Integer, ByVal month As Byte, ByVal day As Byte, ByVal hour As Byte, ByVal minute As Byte, ByVal second As Byte, ByVal centisecond As Byte, ByVal weekday As Byte, ByVal timestamp As Long)
Callback Parameters:
  • sender – Type: BrickletRealTimeClockV2
  • year – Type: Integer, Range: [2000 to 2099]
  • month – Type: Byte, Range: [1 to 12]
  • day – Type: Byte, Range: [1 to 31]
  • hour – Type: Byte, Range: [0 to 23]
  • minute – Type: Byte, Range: [0 to 59]
  • second – Type: Byte, Range: [0 to 59]
  • centisecond – Type: Byte, Range: [0 to 99]
  • weekday – Type: Byte, Range: See constants
  • timestamp – Type: Long, Unit: 1 ms, Range: [-263 to 263 - 1]

This callback is triggered every time the current date and time matches the configured alarm (see SetAlarm()). The parameters are the same as for GetDateTime().

The following constants are available for this function:

For weekday:

  • BrickletRealTimeClockV2.WEEKDAY_MONDAY = 1
  • BrickletRealTimeClockV2.WEEKDAY_TUESDAY = 2
  • BrickletRealTimeClockV2.WEEKDAY_WEDNESDAY = 3
  • BrickletRealTimeClockV2.WEEKDAY_THURSDAY = 4
  • BrickletRealTimeClockV2.WEEKDAY_FRIDAY = 5
  • BrickletRealTimeClockV2.WEEKDAY_SATURDAY = 6
  • BrickletRealTimeClockV2.WEEKDAY_SUNDAY = 7

Virtual Functions

Virtual functions don't communicate with the device itself, but operate only on the API bindings device object. They can be called without the corresponding IP Connection object being connected.

Function BrickletRealTimeClockV2.GetAPIVersion() As Byte()
Output Parameters:
  • apiVersion – Type: Byte Array, Length: 3
    • 0: major – Type: Byte, Range: [0 to 255]
    • 1: minor – Type: Byte, Range: [0 to 255]
    • 2: revision – Type: Byte, Range: [0 to 255]

Returns the version of the API definition implemented by this API bindings. This is neither the release version of this API bindings nor does it tell you anything about the represented Brick or Bricklet.

Function BrickletRealTimeClockV2.GetResponseExpected(ByVal functionId As Byte) As Boolean
Parameters:
  • functionId – Type: Byte, Range: See constants
Returns:
  • responseExpected – Type: Boolean

Returns the response expected flag for the function specified by the function ID parameter. It is true if the function is expected to send a response, false otherwise.

For getter functions this is enabled by default and cannot be disabled, because those functions will always send a response. For callback configuration functions it is enabled by default too, but can be disabled by SetResponseExpected(). For setter functions it is disabled by default and can be enabled.

Enabling the response expected flag for a setter function allows to detect timeouts and other error conditions calls of this setter as well. The device will then send a response for this purpose. If this flag is disabled for a setter function then no response is sent and errors are silently ignored, because they cannot be detected.

The following constants are available for this function:

For functionId:

  • BrickletRealTimeClockV2.FUNCTION_SET_DATE_TIME = 1
  • BrickletRealTimeClockV2.FUNCTION_SET_OFFSET = 4
  • BrickletRealTimeClockV2.FUNCTION_SET_DATE_TIME_CALLBACK_CONFIGURATION = 6
  • BrickletRealTimeClockV2.FUNCTION_SET_ALARM = 8
  • BrickletRealTimeClockV2.FUNCTION_SET_WRITE_FIRMWARE_POINTER = 237
  • BrickletRealTimeClockV2.FUNCTION_SET_STATUS_LED_CONFIG = 239
  • BrickletRealTimeClockV2.FUNCTION_RESET = 243
  • BrickletRealTimeClockV2.FUNCTION_WRITE_UID = 248
Sub BrickletRealTimeClockV2.SetResponseExpected(ByVal functionId As Byte, ByVal responseExpected As Boolean)
Parameters:
  • functionId – Type: Byte, Range: See constants
  • responseExpected – Type: Boolean

Changes the response expected flag of the function specified by the function ID parameter. This flag can only be changed for setter (default value: false) and callback configuration functions (default value: true). For getter functions it is always enabled.

Enabling the response expected flag for a setter function allows to detect timeouts and other error conditions calls of this setter as well. The device will then send a response for this purpose. If this flag is disabled for a setter function then no response is sent and errors are silently ignored, because they cannot be detected.

The following constants are available for this function:

For functionId:

  • BrickletRealTimeClockV2.FUNCTION_SET_DATE_TIME = 1
  • BrickletRealTimeClockV2.FUNCTION_SET_OFFSET = 4
  • BrickletRealTimeClockV2.FUNCTION_SET_DATE_TIME_CALLBACK_CONFIGURATION = 6
  • BrickletRealTimeClockV2.FUNCTION_SET_ALARM = 8
  • BrickletRealTimeClockV2.FUNCTION_SET_WRITE_FIRMWARE_POINTER = 237
  • BrickletRealTimeClockV2.FUNCTION_SET_STATUS_LED_CONFIG = 239
  • BrickletRealTimeClockV2.FUNCTION_RESET = 243
  • BrickletRealTimeClockV2.FUNCTION_WRITE_UID = 248
Sub BrickletRealTimeClockV2.SetResponseExpectedAll(ByVal responseExpected As Boolean)
Parameters:
  • responseExpected – Type: Boolean

Changes the response expected flag for all setter and callback configuration functions of this device at once.

Internal Functions

Internal functions are used for maintenance tasks such as flashing a new firmware of changing the UID of a Bricklet. These task should be performed using Brick Viewer instead of using the internal functions directly.

Function BrickletRealTimeClockV2.SetBootloaderMode(ByVal mode As Byte) As Byte
Parameters:
  • mode – Type: Byte, Range: See constants
Returns:
  • status – Type: Byte, Range: See constants

Sets the bootloader mode and returns the status after the requested mode change was instigated.

You can change from bootloader mode to firmware mode and vice versa. A change from bootloader mode to firmware mode will only take place if the entry function, device identifier and CRC are present and correct.

This function is used by Brick Viewer during flashing. It should not be necessary to call it in a normal user program.

The following constants are available for this function:

For mode:

  • BrickletRealTimeClockV2.BOOTLOADER_MODE_BOOTLOADER = 0
  • BrickletRealTimeClockV2.BOOTLOADER_MODE_FIRMWARE = 1
  • BrickletRealTimeClockV2.BOOTLOADER_MODE_BOOTLOADER_WAIT_FOR_REBOOT = 2
  • BrickletRealTimeClockV2.BOOTLOADER_MODE_FIRMWARE_WAIT_FOR_REBOOT = 3
  • BrickletRealTimeClockV2.BOOTLOADER_MODE_FIRMWARE_WAIT_FOR_ERASE_AND_REBOOT = 4

For status:

  • BrickletRealTimeClockV2.BOOTLOADER_STATUS_OK = 0
  • BrickletRealTimeClockV2.BOOTLOADER_STATUS_INVALID_MODE = 1
  • BrickletRealTimeClockV2.BOOTLOADER_STATUS_NO_CHANGE = 2
  • BrickletRealTimeClockV2.BOOTLOADER_STATUS_ENTRY_FUNCTION_NOT_PRESENT = 3
  • BrickletRealTimeClockV2.BOOTLOADER_STATUS_DEVICE_IDENTIFIER_INCORRECT = 4
  • BrickletRealTimeClockV2.BOOTLOADER_STATUS_CRC_MISMATCH = 5
Function BrickletRealTimeClockV2.GetBootloaderMode() As Byte
Returns:
  • mode – Type: Byte, Range: See constants

Returns the current bootloader mode, see SetBootloaderMode().

The following constants are available for this function:

For mode:

  • BrickletRealTimeClockV2.BOOTLOADER_MODE_BOOTLOADER = 0
  • BrickletRealTimeClockV2.BOOTLOADER_MODE_FIRMWARE = 1
  • BrickletRealTimeClockV2.BOOTLOADER_MODE_BOOTLOADER_WAIT_FOR_REBOOT = 2
  • BrickletRealTimeClockV2.BOOTLOADER_MODE_FIRMWARE_WAIT_FOR_REBOOT = 3
  • BrickletRealTimeClockV2.BOOTLOADER_MODE_FIRMWARE_WAIT_FOR_ERASE_AND_REBOOT = 4
Sub BrickletRealTimeClockV2.SetWriteFirmwarePointer(ByVal pointer As Long)
Parameters:
  • pointer – Type: Long, Unit: 1 B, Range: [0 to 232 - 1]

Sets the firmware pointer for WriteFirmware(). The pointer has to be increased by chunks of size 64. The data is written to flash every 4 chunks (which equals to one page of size 256).

This function is used by Brick Viewer during flashing. It should not be necessary to call it in a normal user program.

Function BrickletRealTimeClockV2.WriteFirmware(ByVal data() As Byte) As Byte
Parameters:
  • data – Type: Byte Array, Length: 64, Range: [0 to 255]
Returns:
  • status – Type: Byte, Range: [0 to 255]

Writes 64 Bytes of firmware at the position as written by SetWriteFirmwarePointer() before. The firmware is written to flash every 4 chunks.

You can only write firmware in bootloader mode.

This function is used by Brick Viewer during flashing. It should not be necessary to call it in a normal user program.

Sub BrickletRealTimeClockV2.WriteUID(ByVal uid As Long)
Parameters:
  • uid – Type: Long, Range: [0 to 232 - 1]

Writes a new UID into flash. If you want to set a new UID you have to decode the Base58 encoded UID string into an integer first.

We recommend that you use Brick Viewer to change the UID.

Function BrickletRealTimeClockV2.ReadUID() As Long
Returns:
  • uid – Type: Long, Range: [0 to 232 - 1]

Returns the current UID as an integer. Encode as Base58 to get the usual string version.

Constants

Const BrickletRealTimeClockV2.DEVICE_IDENTIFIER

This constant is used to identify a Real-Time Clock Bricklet 2.0.

The GetIdentity() function and the IPConnection.EnumerateCallback callback of the IP Connection have a deviceIdentifier parameter to specify the Brick's or Bricklet's type.

Const BrickletRealTimeClockV2.DEVICE_DISPLAY_NAME

This constant represents the human readable name of a Real-Time Clock Bricklet 2.0.