This is the description of the MATLAB/Octave API bindings for the LCD 16x2 Bricklet. General information and technical specifications for the LCD 16x2 Bricklet are summarized in its hardware description.
An installation guide for the MATLAB/Octave API bindings is part of their general description.
The example code below is Public Domain (CC0 1.0).
Download (matlab_example_hello_world.m)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 | function matlab_example_hello_world()
import com.tinkerforge.IPConnection;
import com.tinkerforge.BrickletLCD16x2;
HOST = 'localhost';
PORT = 4223;
UID = 'XYZ'; % Change XYZ to the UID of your LCD 16x2 Bricklet
ipcon = IPConnection(); % Create IP connection
lcd = handle(BrickletLCD16x2(UID, ipcon), 'CallbackProperties'); % Create device object
ipcon.connect(HOST, PORT); % Connect to brickd
% Don't use device before ipcon is connected
% Turn backlight on
lcd.backlightOn();
% Write "Hello World"
lcd.writeLine(0, 0, 'Hello World');
input('Press key to exit\n', 's');
ipcon.disconnect();
end
|
Download (matlab_example_button_callback.m)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 | function matlab_example_button_callback()
import com.tinkerforge.IPConnection;
import com.tinkerforge.BrickletLCD16x2;
HOST = 'localhost';
PORT = 4223;
UID = 'XYZ'; % Change XYZ to the UID of your LCD 16x2 Bricklet
ipcon = IPConnection(); % Create IP connection
lcd = handle(BrickletLCD16x2(UID, ipcon), 'CallbackProperties'); % Create device object
ipcon.connect(HOST, PORT); % Connect to brickd
% Don't use device before ipcon is connected
% Register button pressed callback to function cb_button_pressed
set(lcd, 'ButtonPressedCallback', @(h, e) cb_button_pressed(e));
% Register button released callback to function cb_button_released
set(lcd, 'ButtonReleasedCallback', @(h, e) cb_button_released(e));
input('Press key to exit\n', 's');
ipcon.disconnect();
end
% Callback function for button pressed callback
function cb_button_pressed(e)
fprintf('Button Pressed: %i\n', e.button);
end
% Callback function for button released callback
function cb_button_released(e)
fprintf('Button Released: %i\n', e.button);
end
|
Download (octave_example_hello_world.m)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 | function octave_example_hello_world()
more off;
HOST = "localhost";
PORT = 4223;
UID = "XYZ"; % Change XYZ to the UID of your LCD 16x2 Bricklet
ipcon = javaObject("com.tinkerforge.IPConnection"); % Create IP connection
lcd = javaObject("com.tinkerforge.BrickletLCD16x2", UID, ipcon); % Create device object
ipcon.connect(HOST, PORT); % Connect to brickd
% Don't use device before ipcon is connected
% Turn backlight on
lcd.backlightOn();
% Write "Hello World"
lcd.writeLine(0, 0, "Hello World");
input("Press key to exit\n", "s");
ipcon.disconnect();
end
|
Download (octave_example_button_callback.m)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 | function octave_example_button_callback()
more off;
HOST = "localhost";
PORT = 4223;
UID = "XYZ"; % Change XYZ to the UID of your LCD 16x2 Bricklet
ipcon = javaObject("com.tinkerforge.IPConnection"); % Create IP connection
lcd = javaObject("com.tinkerforge.BrickletLCD16x2", UID, ipcon); % Create device object
ipcon.connect(HOST, PORT); % Connect to brickd
% Don't use device before ipcon is connected
% Register button pressed callback to function cb_button_pressed
lcd.addButtonPressedCallback(@cb_button_pressed);
% Register button released callback to function cb_button_released
lcd.addButtonReleasedCallback(@cb_button_released);
input("Press key to exit\n", "s");
ipcon.disconnect();
end
% Callback function for button pressed callback
function cb_button_pressed(e)
fprintf("Button Pressed: %d\n", java2int(e.button));
end
% Callback function for button released callback
function cb_button_released(e)
fprintf("Button Released: %d\n", java2int(e.button));
end
function int = java2int(value)
if compare_versions(version(), "3.8", "<=")
int = value.intValue();
else
int = value;
end
end
|
Generally, every method of the MATLAB bindings that returns a value can
throw a TimeoutException
. This exception gets thrown if the
device did not respond. If a cable based connection is used, it is
unlikely that this exception gets thrown (assuming nobody unplugs the
device). However, if a wireless connection is used, timeouts will occur
if the distance to the device gets too big.
Beside the TimeoutException
there is also a NotConnectedException
that
is thrown if a method needs to communicate with the device while the
IP Connection is not connected.
Since the MATLAB bindings are based on Java and Java does not support multiple return values and return by reference is not possible for primitive types, we use small classes that only consist of member variables. The member variables of the returned objects are described in the corresponding method descriptions.
The package for all Brick/Bricklet bindings and the IP Connection is
com.tinkerforge.*
All methods listed below are thread-safe.
BrickletLCD16x2
(String uid, IPConnection ipcon)¶Parameters: |
|
---|---|
Returns: |
|
Creates an object with the unique device ID uid
.
In MATLAB:
import com.tinkerforge.BrickletLCD16x2;
lcd16x2 = BrickletLCD16x2('YOUR_DEVICE_UID', ipcon);
In Octave:
lcd16x2 = java_new("com.tinkerforge.BrickletLCD16x2", "YOUR_DEVICE_UID", ipcon);
This object can then be used after the IP Connection is connected.
BrickletLCD16x2.
writeLine
(short line, short position, String text)¶Parameters: |
|
---|
Writes text to a specific line with a specific position. The text can have a maximum of 16 characters.
For example: (0, 5, "Hello") will write Hello in the middle of the first line of the display.
The display uses a special charset that includes all ASCII characters except backslash and tilde. The LCD charset also includes several other non-ASCII characters, see the charset specification for details. The Unicode example above shows how to specify non-ASCII characters and how to translate from Unicode to the LCD charset.
BrickletLCD16x2.
clearDisplay
()¶Deletes all characters from the display.
BrickletLCD16x2.
backlightOn
()¶Turns the backlight on.
BrickletLCD16x2.
backlightOff
()¶Turns the backlight off.
BrickletLCD16x2.
isBacklightOn
()¶Returns: |
|
---|
Returns true if the backlight is on and false otherwise.
BrickletLCD16x2.
setConfig
(boolean cursor, boolean blinking)¶Parameters: |
|
---|
Configures if the cursor (shown as "_") should be visible and if it
should be blinking (shown as a blinking block). The cursor position
is one character behind the the last text written with
writeLine()
.
BrickletLCD16x2.
getConfig
()¶Return Object: |
|
---|
Returns the configuration as set by setConfig()
.
BrickletLCD16x2.
isButtonPressed
(short button)¶Parameters: |
|
---|---|
Returns: |
|
Returns true if the button is pressed.
If you want to react on button presses and releases it is recommended to use the
ButtonPressedCallback
and ButtonReleasedCallback
callbacks.
BrickletLCD16x2.
setCustomCharacter
(short index, short[] character)¶Parameters: |
|
---|
The LCD 16x2 Bricklet can store up to 8 custom characters. The characters consist of 5x8 pixels and can be addressed with the index 0-7. To describe the pixels, the first 5 bits of 8 bytes are used. For example, to make a custom character "H", you should transfer the following:
character[0] = 0b00010001
(decimal value 17)character[1] = 0b00010001
(decimal value 17)character[2] = 0b00010001
(decimal value 17)character[3] = 0b00011111
(decimal value 31)character[4] = 0b00010001
(decimal value 17)character[5] = 0b00010001
(decimal value 17)character[6] = 0b00010001
(decimal value 17)character[7] = 0b00000000
(decimal value 0)The characters can later be written with writeLine()
by using the
characters with the byte representation 8 ("\x08" or "\u0008") to 15
("\x0F" or "\u000F").
You can play around with the custom characters in Brick Viewer since version 2.0.1.
Custom characters are stored by the LCD in RAM, so they have to be set after each startup.
New in version 2.0.1 (Plugin).
BrickletLCD16x2.
getCustomCharacter
(short index)¶Parameters: |
|
---|---|
Returns: |
|
Returns the custom character for a given index, as set with
setCustomCharacter()
.
New in version 2.0.1 (Plugin).
BrickletLCD16x2.
getIdentity
()¶Return Object: |
|
---|
Returns the UID, the UID where the Bricklet is connected to, the position, the hardware and firmware version as well as the device identifier.
The position can be 'a', 'b', 'c', 'd', 'e', 'f', 'g' or 'h' (Bricklet Port). A Bricklet connected to an Isolator Bricklet is always at position 'z'.
The device identifier numbers can be found here. There is also a constant for the device identifier of this Bricklet.
Callbacks can be registered to receive time critical or recurring data from the device. The registration is done with "set" function of MATLAB. The parameters consist of the IP Connection object, the callback name and the callback function. For example, it looks like this in MATLAB:
function my_callback(e)
fprintf('Parameter: %s\n', e.param);
end
set(device, 'ExampleCallback', @(h, e) my_callback(e));
Due to a difference in the Octave Java support the "set" function cannot be used in Octave. The registration is done with "add*Callback" functions of the device object. It looks like this in Octave:
function my_callback(e)
fprintf("Parameter: %s\n", e.param);
end
device.addExampleCallback(@my_callback);
It is possible to add several callbacks and to remove them with the corresponding "remove*Callback" function.
The parameters of the callback are passed to the callback function as fields of
the structure e
, which is derived from the java.util.EventObject
class.
The available callback names with corresponding structure fields are described
below.
Note
Using callbacks for recurring events is always preferred compared to using getters. It will use less USB bandwidth and the latency will be a lot better, since there is no round trip time.
BrickletLCD16x2.
ButtonPressedCallback
¶Event Object: |
|
---|
This callback is triggered when a button is pressed. The parameter is the number of the button.
In MATLAB the set()
function can be used to register a callback function
to this callback.
In Octave a callback function can be added to this callback using the
addButtonPressedCallback()
function. An added callback function can be removed with
the removeButtonPressedCallback()
function.
BrickletLCD16x2.
ButtonReleasedCallback
¶Event Object: |
|
---|
This callback is triggered when a button is released. The parameter is the number of the button.
In MATLAB the set()
function can be used to register a callback function
to this callback.
In Octave a callback function can be added to this callback using the
addButtonReleasedCallback()
function. An added callback function can be removed with
the removeButtonReleasedCallback()
function.
Virtual functions don't communicate with the device itself, but operate only on the API bindings device object. They can be called without the corresponding IP Connection object being connected.
BrickletLCD16x2.
getAPIVersion
()¶Return Object: |
|
---|
Returns the version of the API definition implemented by this API bindings. This is neither the release version of this API bindings nor does it tell you anything about the represented Brick or Bricklet.
BrickletLCD16x2.
getResponseExpected
(byte functionId)¶Parameters: |
|
---|---|
Returns: |
|
Returns the response expected flag for the function specified by the function ID parameter. It is true if the function is expected to send a response, false otherwise.
For getter functions this is enabled by default and cannot be disabled,
because those functions will always send a response. For callback configuration
functions it is enabled by default too, but can be disabled by
setResponseExpected()
. For setter functions it is disabled by default
and can be enabled.
Enabling the response expected flag for a setter function allows to detect timeouts and other error conditions calls of this setter as well. The device will then send a response for this purpose. If this flag is disabled for a setter function then no response is sent and errors are silently ignored, because they cannot be detected.
The following constants are available for this function:
For functionId:
BrickletLCD16x2.
setResponseExpected
(byte functionId, boolean responseExpected)¶Parameters: |
|
---|
Changes the response expected flag of the function specified by the function ID parameter. This flag can only be changed for setter (default value: false) and callback configuration functions (default value: true). For getter functions it is always enabled.
Enabling the response expected flag for a setter function allows to detect timeouts and other error conditions calls of this setter as well. The device will then send a response for this purpose. If this flag is disabled for a setter function then no response is sent and errors are silently ignored, because they cannot be detected.
The following constants are available for this function:
For functionId:
BrickletLCD16x2.
setResponseExpectedAll
(boolean responseExpected)¶Parameters: |
|
---|
Changes the response expected flag for all setter and callback configuration functions of this device at once.
BrickletLCD16x2.
DEVICE_IDENTIFIER
¶This constant is used to identify a LCD 16x2 Bricklet.
The getIdentity()
function and the
IPConnection.EnumerateCallback
callback of the IP Connection have a deviceIdentifier
parameter to specify
the Brick's or Bricklet's type.
BrickletLCD16x2.
DEVICE_DISPLAY_NAME
¶This constant represents the human readable name of a LCD 16x2 Bricklet.