This is the description of the Java API bindings for the One Wire Bricklet. General information and technical specifications for the One Wire Bricklet are summarized in its hardware description.
An installation guide for the Java API bindings is part of their general description.
The example code below is Public Domain (CC0 1.0).
Download (ExampleReadDS18B20Temperature.java)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 | import com.tinkerforge.IPConnection;
import com.tinkerforge.BrickletOneWire;
public class ExampleReadDS18B20Temperature {
private static final String HOST = "localhost";
private static final int PORT = 4223;
// Change XYZ to the UID of your One Wire Bricklet
private static final String UID = "XYZ";
// Note: To make the example code cleaner we do not handle exceptions. Exceptions
// you might normally want to catch are described in the documentation
public static void main(String args[]) throws Exception {
IPConnection ipcon = new IPConnection(); // Create IP connection
BrickletOneWire ow = new BrickletOneWire(UID, ipcon); // Create device object
ipcon.connect(HOST, PORT); // Connect to brickd
// Don't use device before ipcon is connected
ow.writeCommand(0, 78); // WRITE SCRATCHPAD
ow.write(0); // ALARM H (unused)
ow.write(0); // ALARM L (unused)
ow.write(127); // CONFIGURATION: 12-bit mode
// Read temperature 10 times
for(int i = 0; i < 10; i++) {
ow.writeCommand(0, 68); // CONVERT T (start temperature conversion)
Thread.sleep(1000); // Wait for conversion to finish
ow.writeCommand(0, 190); // READ SCRATCHPAD
int tLow = ow.read().data;
int tHigh = ow.read().data;
float temperature = tLow | (tHigh << 8);
// Negative 12-bit values are sign-extended to 16-bit two's complement
if (temperature > 1 << 12) {
temperature -= 1 << 16;
}
// 12-bit mode measures in units of 1/16°C
System.out.println("Temperature: " + temperature/16.0 + " °C");
}
System.out.println("Press key to exit"); System.in.read();
ipcon.disconnect();
}
}
|
Generally, every method of the Java bindings that returns a value can
throw a TimeoutException
. This exception gets thrown if the
device did not respond. If a cable based connection is used, it is
unlikely that this exception gets thrown (assuming nobody unplugs the
device). However, if a wireless connection is used, timeouts will occur
if the distance to the device gets too big.
Beside the TimeoutException
there is also a NotConnectedException
that
is thrown if a method needs to communicate with the device while the
IP Connection is not connected.
Since Java does not support multiple return values and return by reference is not possible for primitive types, we use small classes that only consist of member variables. The member variables of the returned objects are described in the corresponding method descriptions.
The package for all Brick/Bricklet bindings and the IP Connection is
com.tinkerforge.*
All methods listed below are thread-safe.
BrickletOneWire
(String uid, IPConnection ipcon)¶Parameters: |
|
---|---|
Returns: |
|
Creates an object with the unique device ID uid
:
BrickletOneWire oneWire = new BrickletOneWire("YOUR_DEVICE_UID", ipcon);
This object can then be used after the IP Connection is connected.
BrickletOneWire.
searchBus
()¶Return Object: |
|
---|
Returns a list of up to 64 identifiers of the connected 1-Wire devices. Each identifier is 64-bit and consists of 8-bit family code, 48-bit ID and 8-bit CRC.
To get these identifiers the Bricklet runs the SEARCH ROM algorithm, as defined by Maxim.
The following constants are available for this function:
For status:
BrickletOneWire.
resetBus
()¶Returns: |
|
---|
Resets the bus with the 1-Wire reset operation.
The following constants are available for this function:
For status:
BrickletOneWire.
write
(int data)¶Parameters: |
|
---|---|
Returns: |
|
Writes a byte of data to the 1-Wire bus.
The following constants are available for this function:
For status:
BrickletOneWire.
read
()¶Return Object: |
|
---|
Reads a byte of data from the 1-Wire bus.
The following constants are available for this function:
For status:
BrickletOneWire.
writeCommand
(long identifier, int command)¶Parameters: |
|
---|---|
Returns: |
|
Writes a command to the 1-Wire device with the given identifier. You can obtain
the identifier by calling searchBus()
. The MATCH ROM operation is used to
write the command.
If you only have one device connected or want to broadcast to all devices you can set the identifier to 0. In this case the SKIP ROM operation is used to write the command.
The following constants are available for this function:
For status:
BrickletOneWire.
setCommunicationLEDConfig
(int config)¶Parameters: |
|
---|
Sets the communication LED configuration. By default the LED shows 1-wire communication traffic by flickering.
You can also turn the LED permanently on/off or show a heartbeat.
If the Bricklet is in bootloader mode, the LED is off.
The following constants are available for this function:
For config:
BrickletOneWire.
getCommunicationLEDConfig
()¶Returns: |
|
---|
Returns the configuration as set by setCommunicationLEDConfig()
The following constants are available for this function:
For config:
BrickletOneWire.
getSPITFPErrorCount
()¶Return Object: |
|
---|
Returns the error count for the communication between Brick and Bricklet.
The errors are divided into
The errors counts are for errors that occur on the Bricklet side. All Bricks have a similar function that returns the errors on the Brick side.
BrickletOneWire.
setStatusLEDConfig
(int config)¶Parameters: |
|
---|
Sets the status LED configuration. By default the LED shows communication traffic between Brick and Bricklet, it flickers once for every 10 received data packets.
You can also turn the LED permanently on/off or show a heartbeat.
If the Bricklet is in bootloader mode, the LED is will show heartbeat by default.
The following constants are available for this function:
For config:
BrickletOneWire.
getStatusLEDConfig
()¶Returns: |
|
---|
Returns the configuration as set by setStatusLEDConfig()
The following constants are available for this function:
For config:
BrickletOneWire.
getChipTemperature
()¶Returns: |
|
---|
Returns the temperature as measured inside the microcontroller. The value returned is not the ambient temperature!
The temperature is only proportional to the real temperature and it has bad accuracy. Practically it is only useful as an indicator for temperature changes.
BrickletOneWire.
reset
()¶Calling this function will reset the Bricklet. All configurations will be lost.
After a reset you have to create new device objects, calling functions on the existing ones will result in undefined behavior!
BrickletOneWire.
getIdentity
()¶Return Object: |
|
---|
Returns the UID, the UID where the Bricklet is connected to, the position, the hardware and firmware version as well as the device identifier.
The position can be 'a', 'b', 'c', 'd', 'e', 'f', 'g' or 'h' (Bricklet Port). A Bricklet connected to an Isolator Bricklet is always at position 'z'.
The device identifier numbers can be found here. There is also a constant for the device identifier of this Bricklet.
Virtual functions don't communicate with the device itself, but operate only on the API bindings device object. They can be called without the corresponding IP Connection object being connected.
BrickletOneWire.
getAPIVersion
()¶Return Object: |
|
---|
Returns the version of the API definition implemented by this API bindings. This is neither the release version of this API bindings nor does it tell you anything about the represented Brick or Bricklet.
BrickletOneWire.
getResponseExpected
(byte functionId)¶Parameters: |
|
---|---|
Returns: |
|
Returns the response expected flag for the function specified by the function ID parameter. It is true if the function is expected to send a response, false otherwise.
For getter functions this is enabled by default and cannot be disabled,
because those functions will always send a response. For listener configuration
functions it is enabled by default too, but can be disabled by
setResponseExpected()
. For setter functions it is disabled by default
and can be enabled.
Enabling the response expected flag for a setter function allows to detect timeouts and other error conditions calls of this setter as well. The device will then send a response for this purpose. If this flag is disabled for a setter function then no response is sent and errors are silently ignored, because they cannot be detected.
The following constants are available for this function:
For functionId:
BrickletOneWire.
setResponseExpected
(byte functionId, boolean responseExpected)¶Parameters: |
|
---|
Changes the response expected flag of the function specified by the function ID parameter. This flag can only be changed for setter (default value: false) and listener configuration functions (default value: true). For getter functions it is always enabled.
Enabling the response expected flag for a setter function allows to detect timeouts and other error conditions calls of this setter as well. The device will then send a response for this purpose. If this flag is disabled for a setter function then no response is sent and errors are silently ignored, because they cannot be detected.
The following constants are available for this function:
For functionId:
BrickletOneWire.
setResponseExpectedAll
(boolean responseExpected)¶Parameters: |
|
---|
Changes the response expected flag for all setter and listener configuration functions of this device at once.
Internal functions are used for maintenance tasks such as flashing a new firmware of changing the UID of a Bricklet. These task should be performed using Brick Viewer instead of using the internal functions directly.
BrickletOneWire.
setBootloaderMode
(int mode)¶Parameters: |
|
---|---|
Returns: |
|
Sets the bootloader mode and returns the status after the requested mode change was instigated.
You can change from bootloader mode to firmware mode and vice versa. A change from bootloader mode to firmware mode will only take place if the entry function, device identifier and CRC are present and correct.
This function is used by Brick Viewer during flashing. It should not be necessary to call it in a normal user program.
The following constants are available for this function:
For mode:
For status:
BrickletOneWire.
getBootloaderMode
()¶Returns: |
|
---|
Returns the current bootloader mode, see setBootloaderMode()
.
The following constants are available for this function:
For mode:
BrickletOneWire.
setWriteFirmwarePointer
(long pointer)¶Parameters: |
|
---|
Sets the firmware pointer for writeFirmware()
. The pointer has
to be increased by chunks of size 64. The data is written to flash
every 4 chunks (which equals to one page of size 256).
This function is used by Brick Viewer during flashing. It should not be necessary to call it in a normal user program.
BrickletOneWire.
writeFirmware
(int[] data)¶Parameters: |
|
---|---|
Returns: |
|
Writes 64 Bytes of firmware at the position as written by
setWriteFirmwarePointer()
before. The firmware is written
to flash every 4 chunks.
You can only write firmware in bootloader mode.
This function is used by Brick Viewer during flashing. It should not be necessary to call it in a normal user program.
BrickletOneWire.
writeUID
(long uid)¶Parameters: |
|
---|
Writes a new UID into flash. If you want to set a new UID you have to decode the Base58 encoded UID string into an integer first.
We recommend that you use Brick Viewer to change the UID.
BrickletOneWire.
readUID
()¶Returns: |
|
---|
Returns the current UID as an integer. Encode as Base58 to get the usual string version.
BrickletOneWire.
DEVICE_IDENTIFIER
¶This constant is used to identify a One Wire Bricklet.
The getIdentity()
function and the
IPConnection.EnumerateListener
listener of the IP Connection have a deviceIdentifier
parameter to specify
the Brick's or Bricklet's type.
BrickletOneWire.
DEVICE_DISPLAY_NAME
¶This constant represents the human readable name of a One Wire Bricklet.