C/C++ - RGB LED Matrix Bricklet

This is the description of the C/C++ API bindings for the RGB LED Matrix Bricklet. General information and technical specifications for the RGB LED Matrix Bricklet are summarized in its hardware description.

An installation guide for the C/C++ API bindings is part of their general description.

API

Most functions of the C/C++ bindings return an error code (e_code). Data returned from the device, when a getter is called, is handled via output parameters. These parameters are labeled with the ret_ prefix.

Possible error codes are:

  • E_OK = 0
  • E_TIMEOUT = -1
  • E_NO_STREAM_SOCKET = -2
  • E_HOSTNAME_INVALID = -3
  • E_NO_CONNECT = -4
  • E_NO_THREAD = -5
  • E_NOT_ADDED = -6 (unused since C/C++ bindings version 2.0.0)
  • E_ALREADY_CONNECTED = -7
  • E_NOT_CONNECTED = -8
  • E_INVALID_PARAMETER = -9
  • E_NOT_SUPPORTED = -10
  • E_UNKNOWN_ERROR_CODE = -11
  • E_STREAM_OUT_OF_SYNC = -12
  • E_INVALID_UID = -13
  • E_NON_ASCII_CHAR_IN_SECRET = -14
  • E_WRONG_DEVICE_TYPE = -15
  • E_DEVICE_REPLACED = -16
  • E_WRONG_RESPONSE_LENGTH = -17

as defined in ip_connection.h.

All functions listed below are thread-safe.

Basic Functions

void rgb_led_matrix_create(RGBLEDMatrix *rgb_led_matrix, const char *uid, IPConnection *ipcon)
Parameters:
  • rgb_led_matrix – Type: RGBLEDMatrix *
  • uid – Type: const char *
  • ipcon – Type: IPConnection *

Creates the device object rgb_led_matrix with the unique device ID uid and adds it to the IPConnection ipcon:

RGBLEDMatrix rgb_led_matrix;
rgb_led_matrix_create(&rgb_led_matrix, "YOUR_DEVICE_UID", &ipcon);

This device object can be used after the IP connection has been connected.

void rgb_led_matrix_destroy(RGBLEDMatrix *rgb_led_matrix)
Parameters:
  • rgb_led_matrix – Type: RGBLEDMatrix *

Removes the device object rgb_led_matrix from its IPConnection and destroys it. The device object cannot be used anymore afterwards.

int rgb_led_matrix_set_red(RGBLEDMatrix *rgb_led_matrix, uint8_t red[64])
Parameters:
  • rgb_led_matrix – Type: RGBLEDMatrix *
  • red – Type: uint8_t[64], Range: [0 to 255]
Returns:
  • e_code – Type: int

Sets the 64 red LED values of the matrix.

int rgb_led_matrix_get_red(RGBLEDMatrix *rgb_led_matrix, uint8_t ret_red[64])
Parameters:
  • rgb_led_matrix – Type: RGBLEDMatrix *
Output Parameters:
  • ret_red – Type: uint8_t[64], Range: [0 to 255], Default: {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
Returns:
  • e_code – Type: int

Returns the red LED values as set by rgb_led_matrix_set_red().

int rgb_led_matrix_set_green(RGBLEDMatrix *rgb_led_matrix, uint8_t green[64])
Parameters:
  • rgb_led_matrix – Type: RGBLEDMatrix *
  • green – Type: uint8_t[64], Range: [0 to 255], Default: {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
Returns:
  • e_code – Type: int

Sets the 64 green LED values of the matrix.

int rgb_led_matrix_get_green(RGBLEDMatrix *rgb_led_matrix, uint8_t ret_green[64])
Parameters:
  • rgb_led_matrix – Type: RGBLEDMatrix *
Output Parameters:
  • ret_green – Type: uint8_t[64], Range: [0 to 255], Default: {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
Returns:
  • e_code – Type: int

Returns the green LED values as set by rgb_led_matrix_set_green().

int rgb_led_matrix_set_blue(RGBLEDMatrix *rgb_led_matrix, uint8_t blue[64])
Parameters:
  • rgb_led_matrix – Type: RGBLEDMatrix *
  • blue – Type: uint8_t[64], Range: [0 to 255], Default: {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
Returns:
  • e_code – Type: int

Sets the 64 blue LED values of the matrix.

int rgb_led_matrix_get_blue(RGBLEDMatrix *rgb_led_matrix, uint8_t ret_blue[64])
Parameters:
  • rgb_led_matrix – Type: RGBLEDMatrix *
Output Parameters:
  • ret_blue – Type: uint8_t[64], Range: [0 to 255], Default: {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
Returns:
  • e_code – Type: int

Returns the blue LED values as set by rgb_led_matrix_set_blue().

int rgb_led_matrix_set_frame_duration(RGBLEDMatrix *rgb_led_matrix, uint16_t frame_duration)
Parameters:
  • rgb_led_matrix – Type: RGBLEDMatrix *
  • frame_duration – Type: uint16_t, Unit: 1 ms, Range: [0 to 216 - 1], Default: 0
Returns:
  • e_code – Type: int

Sets the frame duration.

Example: If you want to achieve 20 frames per second, you should set the frame duration to 50ms (50ms * 20 = 1 second).

Set this value to 0 to turn the automatic frame write mechanism off.

Approach:

For frame duration of 0 see rgb_led_matrix_draw_frame().

int rgb_led_matrix_get_frame_duration(RGBLEDMatrix *rgb_led_matrix, uint16_t *ret_frame_duration)
Parameters:
  • rgb_led_matrix – Type: RGBLEDMatrix *
Output Parameters:
  • ret_frame_duration – Type: uint16_t, Unit: 1 ms, Range: [0 to 216 - 1], Default: 0
Returns:
  • e_code – Type: int

Returns the frame duration as set by rgb_led_matrix_set_frame_duration().

int rgb_led_matrix_draw_frame(RGBLEDMatrix *rgb_led_matrix)
Parameters:
  • rgb_led_matrix – Type: RGBLEDMatrix *
Returns:
  • e_code – Type: int

If you set the frame duration to 0 (see rgb_led_matrix_set_frame_duration()), you can use this function to transfer the frame to the matrix.

Approach:

Advanced Functions

int rgb_led_matrix_get_supply_voltage(RGBLEDMatrix *rgb_led_matrix, uint16_t *ret_voltage)
Parameters:
  • rgb_led_matrix – Type: RGBLEDMatrix *
Output Parameters:
  • ret_voltage – Type: uint16_t, Unit: 1 mV, Range: [0 to 216 - 1]
Returns:
  • e_code – Type: int

Returns the current supply voltage of the Bricklet.

int rgb_led_matrix_get_spitfp_error_count(RGBLEDMatrix *rgb_led_matrix, uint32_t *ret_error_count_ack_checksum, uint32_t *ret_error_count_message_checksum, uint32_t *ret_error_count_frame, uint32_t *ret_error_count_overflow)
Parameters:
  • rgb_led_matrix – Type: RGBLEDMatrix *
Output Parameters:
  • ret_error_count_ack_checksum – Type: uint32_t, Range: [0 to 232 - 1]
  • ret_error_count_message_checksum – Type: uint32_t, Range: [0 to 232 - 1]
  • ret_error_count_frame – Type: uint32_t, Range: [0 to 232 - 1]
  • ret_error_count_overflow – Type: uint32_t, Range: [0 to 232 - 1]
Returns:
  • e_code – Type: int

Returns the error count for the communication between Brick and Bricklet.

The errors are divided into

  • ACK checksum errors,
  • message checksum errors,
  • framing errors and
  • overflow errors.

The errors counts are for errors that occur on the Bricklet side. All Bricks have a similar function that returns the errors on the Brick side.

int rgb_led_matrix_set_status_led_config(RGBLEDMatrix *rgb_led_matrix, uint8_t config)
Parameters:
  • rgb_led_matrix – Type: RGBLEDMatrix *
  • config – Type: uint8_t, Range: See constants, Default: 3
Returns:
  • e_code – Type: int

Sets the status LED configuration. By default the LED shows communication traffic between Brick and Bricklet, it flickers once for every 10 received data packets.

You can also turn the LED permanently on/off or show a heartbeat.

If the Bricklet is in bootloader mode, the LED is will show heartbeat by default.

The following constants are available for this function:

For config:

  • RGB_LED_MATRIX_STATUS_LED_CONFIG_OFF = 0
  • RGB_LED_MATRIX_STATUS_LED_CONFIG_ON = 1
  • RGB_LED_MATRIX_STATUS_LED_CONFIG_SHOW_HEARTBEAT = 2
  • RGB_LED_MATRIX_STATUS_LED_CONFIG_SHOW_STATUS = 3
int rgb_led_matrix_get_status_led_config(RGBLEDMatrix *rgb_led_matrix, uint8_t *ret_config)
Parameters:
  • rgb_led_matrix – Type: RGBLEDMatrix *
Output Parameters:
  • ret_config – Type: uint8_t, Range: See constants, Default: 3
Returns:
  • e_code – Type: int

Returns the configuration as set by rgb_led_matrix_set_status_led_config()

The following constants are available for this function:

For ret_config:

  • RGB_LED_MATRIX_STATUS_LED_CONFIG_OFF = 0
  • RGB_LED_MATRIX_STATUS_LED_CONFIG_ON = 1
  • RGB_LED_MATRIX_STATUS_LED_CONFIG_SHOW_HEARTBEAT = 2
  • RGB_LED_MATRIX_STATUS_LED_CONFIG_SHOW_STATUS = 3
int rgb_led_matrix_get_chip_temperature(RGBLEDMatrix *rgb_led_matrix, int16_t *ret_temperature)
Parameters:
  • rgb_led_matrix – Type: RGBLEDMatrix *
Output Parameters:
  • ret_temperature – Type: int16_t, Unit: 1 °C, Range: [-215 to 215 - 1]
Returns:
  • e_code – Type: int

Returns the temperature as measured inside the microcontroller. The value returned is not the ambient temperature!

The temperature is only proportional to the real temperature and it has bad accuracy. Practically it is only useful as an indicator for temperature changes.

int rgb_led_matrix_reset(RGBLEDMatrix *rgb_led_matrix)
Parameters:
  • rgb_led_matrix – Type: RGBLEDMatrix *
Returns:
  • e_code – Type: int

Calling this function will reset the Bricklet. All configurations will be lost.

After a reset you have to create new device objects, calling functions on the existing ones will result in undefined behavior!

int rgb_led_matrix_get_identity(RGBLEDMatrix *rgb_led_matrix, char ret_uid[8], char ret_connected_uid[8], char *ret_position, uint8_t ret_hardware_version[3], uint8_t ret_firmware_version[3], uint16_t *ret_device_identifier)
Parameters:
  • rgb_led_matrix – Type: RGBLEDMatrix *
Output Parameters:
  • ret_uid – Type: char[8]
  • ret_connected_uid – Type: char[8]
  • ret_position – Type: char, Range: ['a' to 'h', 'z']
  • ret_hardware_version – Type: uint8_t[3]
    • 0: major – Type: uint8_t, Range: [0 to 255]
    • 1: minor – Type: uint8_t, Range: [0 to 255]
    • 2: revision – Type: uint8_t, Range: [0 to 255]
  • ret_firmware_version – Type: uint8_t[3]
    • 0: major – Type: uint8_t, Range: [0 to 255]
    • 1: minor – Type: uint8_t, Range: [0 to 255]
    • 2: revision – Type: uint8_t, Range: [0 to 255]
  • ret_device_identifier – Type: uint16_t, Range: [0 to 216 - 1]
Returns:
  • e_code – Type: int

Returns the UID, the UID where the Bricklet is connected to, the position, the hardware and firmware version as well as the device identifier.

The position can be 'a', 'b', 'c', 'd', 'e', 'f', 'g' or 'h' (Bricklet Port). A Bricklet connected to an Isolator Bricklet is always at position 'z'.

The device identifier numbers can be found here. There is also a constant for the device identifier of this Bricklet.

Callback Configuration Functions

void rgb_led_matrix_register_callback(RGBLEDMatrix *rgb_led_matrix, int16_t callback_id, void (*function)(void), void *user_data)
Parameters:
  • rgb_led_matrix – Type: RGBLEDMatrix *
  • callback_id – Type: int16_t
  • function – Type: void (*)(void)
  • user_data – Type: void *

Registers the given function with the given callback_id. The user_data will be passed as the last parameter to the function.

The available callback IDs with corresponding function signatures are listed below.

Callbacks

Callbacks can be registered to receive time critical or recurring data from the device. The registration is done with the rgb_led_matrix_register_callback() function:

void my_callback(int value, void *user_data) {
    printf("Value: %d\n", value);
}

rgb_led_matrix_register_callback(&rgb_led_matrix,
                                 RGB_LED_MATRIX_CALLBACK_EXAMPLE,
                                 (void (*)(void))my_callback,
                                 NULL);

The available constants with corresponding function signatures are described below.

Note

Using callbacks for recurring events is always preferred compared to using getters. It will use less USB bandwidth and the latency will be a lot better, since there is no round trip time.

RGB_LED_MATRIX_CALLBACK_FRAME_STARTED
void callback(uint32_t frame_number, void *user_data)
Callback Parameters:
  • frame_number – Type: uint32_t, Range: [0 to 232 - 1]
  • user_data – Type: void *

This callback is triggered as soon as a new frame write is started. The LED values are double buffered, so you can send the LED values for the next frame directly after this callback is triggered.

Virtual Functions

Virtual functions don't communicate with the device itself, but operate only on the API bindings device object. They can be called without the corresponding IP Connection object being connected.

int rgb_led_matrix_get_api_version(RGBLEDMatrix *rgb_led_matrix, uint8_t ret_api_version[3])
Parameters:
  • rgb_led_matrix – Type: RGBLEDMatrix *
Output Parameters:
  • ret_api_version – Type: uint8_t[3]
    • 0: major – Type: uint8_t, Range: [0 to 255]
    • 1: minor – Type: uint8_t, Range: [0 to 255]
    • 2: revision – Type: uint8_t, Range: [0 to 255]
Returns:
  • e_code – Type: int

Returns the version of the API definition implemented by this API bindings. This is neither the release version of this API bindings nor does it tell you anything about the represented Brick or Bricklet.

int rgb_led_matrix_get_response_expected(RGBLEDMatrix *rgb_led_matrix, uint8_t function_id, bool *ret_response_expected)
Parameters:
  • rgb_led_matrix – Type: RGBLEDMatrix *
  • function_id – Type: uint8_t, Range: See constants
Output Parameters:
  • ret_response_expected – Type: bool
Returns:
  • e_code – Type: int

Returns the response expected flag for the function specified by the function ID parameter. It is true if the function is expected to send a response, false otherwise.

For getter functions this is enabled by default and cannot be disabled, because those functions will always send a response. For callback configuration functions it is enabled by default too, but can be disabled by rgb_led_matrix_set_response_expected(). For setter functions it is disabled by default and can be enabled.

Enabling the response expected flag for a setter function allows to detect timeouts and other error conditions calls of this setter as well. The device will then send a response for this purpose. If this flag is disabled for a setter function then no response is sent and errors are silently ignored, because they cannot be detected.

The following constants are available for this function:

For function_id:

  • RGB_LED_MATRIX_FUNCTION_SET_RED = 1
  • RGB_LED_MATRIX_FUNCTION_SET_GREEN = 3
  • RGB_LED_MATRIX_FUNCTION_SET_BLUE = 5
  • RGB_LED_MATRIX_FUNCTION_SET_FRAME_DURATION = 7
  • RGB_LED_MATRIX_FUNCTION_DRAW_FRAME = 9
  • RGB_LED_MATRIX_FUNCTION_SET_WRITE_FIRMWARE_POINTER = 237
  • RGB_LED_MATRIX_FUNCTION_SET_STATUS_LED_CONFIG = 239
  • RGB_LED_MATRIX_FUNCTION_RESET = 243
  • RGB_LED_MATRIX_FUNCTION_WRITE_UID = 248
int rgb_led_matrix_set_response_expected(RGBLEDMatrix *rgb_led_matrix, uint8_t function_id, bool response_expected)
Parameters:
  • rgb_led_matrix – Type: RGBLEDMatrix *
  • function_id – Type: uint8_t, Range: See constants
  • response_expected – Type: bool
Returns:
  • e_code – Type: int

Changes the response expected flag of the function specified by the function ID parameter. This flag can only be changed for setter (default value: false) and callback configuration functions (default value: true). For getter functions it is always enabled.

Enabling the response expected flag for a setter function allows to detect timeouts and other error conditions calls of this setter as well. The device will then send a response for this purpose. If this flag is disabled for a setter function then no response is sent and errors are silently ignored, because they cannot be detected.

The following constants are available for this function:

For function_id:

  • RGB_LED_MATRIX_FUNCTION_SET_RED = 1
  • RGB_LED_MATRIX_FUNCTION_SET_GREEN = 3
  • RGB_LED_MATRIX_FUNCTION_SET_BLUE = 5
  • RGB_LED_MATRIX_FUNCTION_SET_FRAME_DURATION = 7
  • RGB_LED_MATRIX_FUNCTION_DRAW_FRAME = 9
  • RGB_LED_MATRIX_FUNCTION_SET_WRITE_FIRMWARE_POINTER = 237
  • RGB_LED_MATRIX_FUNCTION_SET_STATUS_LED_CONFIG = 239
  • RGB_LED_MATRIX_FUNCTION_RESET = 243
  • RGB_LED_MATRIX_FUNCTION_WRITE_UID = 248
int rgb_led_matrix_set_response_expected_all(RGBLEDMatrix *rgb_led_matrix, bool response_expected)
Parameters:
  • rgb_led_matrix – Type: RGBLEDMatrix *
  • response_expected – Type: bool
Returns:
  • e_code – Type: int

Changes the response expected flag for all setter and callback configuration functions of this device at once.

Internal Functions

Internal functions are used for maintenance tasks such as flashing a new firmware of changing the UID of a Bricklet. These task should be performed using Brick Viewer instead of using the internal functions directly.

int rgb_led_matrix_set_bootloader_mode(RGBLEDMatrix *rgb_led_matrix, uint8_t mode, uint8_t *ret_status)
Parameters:
  • rgb_led_matrix – Type: RGBLEDMatrix *
  • mode – Type: uint8_t, Range: See constants
Output Parameters:
  • ret_status – Type: uint8_t, Range: See constants
Returns:
  • e_code – Type: int

Sets the bootloader mode and returns the status after the requested mode change was instigated.

You can change from bootloader mode to firmware mode and vice versa. A change from bootloader mode to firmware mode will only take place if the entry function, device identifier and CRC are present and correct.

This function is used by Brick Viewer during flashing. It should not be necessary to call it in a normal user program.

The following constants are available for this function:

For mode:

  • RGB_LED_MATRIX_BOOTLOADER_MODE_BOOTLOADER = 0
  • RGB_LED_MATRIX_BOOTLOADER_MODE_FIRMWARE = 1
  • RGB_LED_MATRIX_BOOTLOADER_MODE_BOOTLOADER_WAIT_FOR_REBOOT = 2
  • RGB_LED_MATRIX_BOOTLOADER_MODE_FIRMWARE_WAIT_FOR_REBOOT = 3
  • RGB_LED_MATRIX_BOOTLOADER_MODE_FIRMWARE_WAIT_FOR_ERASE_AND_REBOOT = 4

For ret_status:

  • RGB_LED_MATRIX_BOOTLOADER_STATUS_OK = 0
  • RGB_LED_MATRIX_BOOTLOADER_STATUS_INVALID_MODE = 1
  • RGB_LED_MATRIX_BOOTLOADER_STATUS_NO_CHANGE = 2
  • RGB_LED_MATRIX_BOOTLOADER_STATUS_ENTRY_FUNCTION_NOT_PRESENT = 3
  • RGB_LED_MATRIX_BOOTLOADER_STATUS_DEVICE_IDENTIFIER_INCORRECT = 4
  • RGB_LED_MATRIX_BOOTLOADER_STATUS_CRC_MISMATCH = 5
int rgb_led_matrix_get_bootloader_mode(RGBLEDMatrix *rgb_led_matrix, uint8_t *ret_mode)
Parameters:
  • rgb_led_matrix – Type: RGBLEDMatrix *
Output Parameters:
  • ret_mode – Type: uint8_t, Range: See constants
Returns:
  • e_code – Type: int

Returns the current bootloader mode, see rgb_led_matrix_set_bootloader_mode().

The following constants are available for this function:

For ret_mode:

  • RGB_LED_MATRIX_BOOTLOADER_MODE_BOOTLOADER = 0
  • RGB_LED_MATRIX_BOOTLOADER_MODE_FIRMWARE = 1
  • RGB_LED_MATRIX_BOOTLOADER_MODE_BOOTLOADER_WAIT_FOR_REBOOT = 2
  • RGB_LED_MATRIX_BOOTLOADER_MODE_FIRMWARE_WAIT_FOR_REBOOT = 3
  • RGB_LED_MATRIX_BOOTLOADER_MODE_FIRMWARE_WAIT_FOR_ERASE_AND_REBOOT = 4
int rgb_led_matrix_set_write_firmware_pointer(RGBLEDMatrix *rgb_led_matrix, uint32_t pointer)
Parameters:
  • rgb_led_matrix – Type: RGBLEDMatrix *
  • pointer – Type: uint32_t, Unit: 1 B, Range: [0 to 232 - 1]
Returns:
  • e_code – Type: int

Sets the firmware pointer for rgb_led_matrix_write_firmware(). The pointer has to be increased by chunks of size 64. The data is written to flash every 4 chunks (which equals to one page of size 256).

This function is used by Brick Viewer during flashing. It should not be necessary to call it in a normal user program.

int rgb_led_matrix_write_firmware(RGBLEDMatrix *rgb_led_matrix, uint8_t data[64], uint8_t *ret_status)
Parameters:
  • rgb_led_matrix – Type: RGBLEDMatrix *
  • data – Type: uint8_t[64], Range: [0 to 255]
Output Parameters:
  • ret_status – Type: uint8_t, Range: [0 to 255]
Returns:
  • e_code – Type: int

Writes 64 Bytes of firmware at the position as written by rgb_led_matrix_set_write_firmware_pointer() before. The firmware is written to flash every 4 chunks.

You can only write firmware in bootloader mode.

This function is used by Brick Viewer during flashing. It should not be necessary to call it in a normal user program.

int rgb_led_matrix_write_uid(RGBLEDMatrix *rgb_led_matrix, uint32_t uid)
Parameters:
  • rgb_led_matrix – Type: RGBLEDMatrix *
  • uid – Type: uint32_t, Range: [0 to 232 - 1]
Returns:
  • e_code – Type: int

Writes a new UID into flash. If you want to set a new UID you have to decode the Base58 encoded UID string into an integer first.

We recommend that you use Brick Viewer to change the UID.

int rgb_led_matrix_read_uid(RGBLEDMatrix *rgb_led_matrix, uint32_t *ret_uid)
Parameters:
  • rgb_led_matrix – Type: RGBLEDMatrix *
Output Parameters:
  • ret_uid – Type: uint32_t, Range: [0 to 232 - 1]
Returns:
  • e_code – Type: int

Returns the current UID as an integer. Encode as Base58 to get the usual string version.

Constants

RGB_LED_MATRIX_DEVICE_IDENTIFIER

This constant is used to identify a RGB LED Matrix Bricklet.

The rgb_led_matrix_get_identity() function and the IPCON_CALLBACK_ENUMERATE callback of the IP Connection have a device_identifier parameter to specify the Brick's or Bricklet's type.

RGB_LED_MATRIX_DEVICE_DISPLAY_NAME

This constant represents the human readable name of a RGB LED Matrix Bricklet.