Go - Thermal Imaging Bricklet

This is the description of the Go API bindings for the Thermal Imaging Bricklet. General information and technical specifications for the Thermal Imaging Bricklet are summarized in its hardware description.

An installation guide for the Go API bindings is part of their general description. Additional documentation can be found on godoc.org.

Examples

The example code below is Public Domain (CC0 1.0).

Callback

Download (example_callback.go)

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
package main

import (
    "fmt"
    "github.com/Tinkerforge/go-api-bindings/ipconnection"
    "github.com/Tinkerforge/go-api-bindings/thermal_imaging_bricklet"
)

const ADDR string = "localhost:4223"
const UID string = "XYZ" // Change XYZ to the UID of your Thermal Imaging Bricklet.

func main() {
    ipcon := ipconnection.New()
    defer ipcon.Close()

    ti, _ := thermal_imaging_bricklet.New(UID, &ipcon) // Create device object.

    ipcon.Connect(ADDR) // Connect to brickd.
    defer ipcon.Disconnect()
    // Don't use device before ipcon is connected.

    ti.RegisterHighContrastImageCallback(func(image []uint8) {
        // Image is a slice of size 80*60 with an 8 bit grey value for each element.
    })

    // Enable high contrast image transfer for callback
    ti.SetImageTransferConfig(thermal_imaging_bricklet.ImageTransferCallbackHighContrastImage)

    fmt.Print("Press enter to exit.")
    fmt.Scanln()
}

API

The Thermal Imaging Bricklet API is defined in the package github.com/Tinkerforge/go-api-bindings/thermal_imaging_bricklet

Nearly every function of the Go bindings can return an ipconnection.DeviceError, implementing the error interface. The error can have one of the following values:

  • ipconnection.DeviceErrorSuccess = 0
  • ipconnection.DeviceErrorInvalidParameter = 1
  • ipconnection.DeviceErrorFunctionNotSupported = 2
  • ipconnection.DeviceErrorUnknownError = 3

which correspond to the values returned from Bricks and Bricklets.

All functions listed below are thread-safe.

Basic Functions

func thermal_imaging_bricklet.New(uid string, ipcon *IPConnection) (device ThermalImagingBricklet, err error)
Parameters:
  • uid – Type: string
  • ipcon – Type: *IPConnection
Returns:
  • device – Type: ThermalImagingBricklet
  • err – Type: error

Creates a new ThermalImagingBricklet object with the unique device ID uid and adds it to the IPConnection ipcon:

device, err := thermal_imaging_bricklet.New("YOUR_DEVICE_UID", &ipcon)

This device object can be used after the IPConnection has been connected.

func (*ThermalImagingBricklet) GetHighContrastImage() (image []uint8, err error)
Returns:
  • image – Type: []uint8, Length: 4800, Range: [0 to 255]
  • err – Type: error

Returns the current high contrast image. See here for the difference between High Contrast and Temperature Image. If you don't know what to use the High Contrast Image is probably right for you.

The data is organized as a 8-bit value 80x60 pixel matrix linearized in a one-dimensional array. The data is arranged line by line from top left to bottom right.

Each 8-bit value represents one gray-scale image pixel that can directly be shown to a user on a display.

Before you can use this function you have to enable it with SetImageTransferConfig().

func (*ThermalImagingBricklet) GetTemperatureImage() (image []uint16, err error)
Returns:
  • image – Type: []uint16, Length: 4800, Unit: ? K, Range: [0 to 216 - 1]
  • err – Type: error

Returns the current temperature image. See here for the difference between High Contrast and Temperature Image. If you don't know what to use the High Contrast Image is probably right for you.

The data is organized as a 16-bit value 80x60 pixel matrix linearized in a one-dimensional array. The data is arranged line by line from top left to bottom right.

Each 16-bit value represents one temperature measurement in either Kelvin/10 or Kelvin/100 (depending on the resolution set with SetResolution()).

Before you can use this function you have to enable it with SetImageTransferConfig().

func (*ThermalImagingBricklet) GetStatistics() (spotmeterStatistics [4]uint16, temperatures [4]uint16, resolution uint8, ffcStatus uint8, temperatureWarning [2]bool, err error)
Returns:
  • spotmeterStatistics – Type: [4]uint16
    • 0: meanTemperature – Type: uint16, Unit: ? K, Range: [0 to 216 - 1]
    • 1: maxTemperature – Type: uint16, Unit: ? K, Range: [0 to 216 - 1]
    • 2: minTemperature – Type: uint16, Unit: ? K, Range: [0 to 216 - 1]
    • 3: pixelCount – Type: uint16, Range: [0 to 4800]
  • temperatures – Type: [4]uint16
    • 0: focalPlainArray – Type: uint16, Unit: ? K, Range: [0 to 216 - 1]
    • 1: focalPlainArrayLastFFC – Type: uint16, Unit: ? K, Range: [0 to 216 - 1]
    • 2: housing – Type: uint16, Unit: ? K, Range: [0 to 216 - 1]
    • 3: housingLastFFC – Type: uint16, Unit: ? K, Range: [0 to 216 - 1]
  • resolution – Type: uint8, Range: See constants
  • ffcStatus – Type: uint8, Range: See constants
  • temperatureWarning – Type: [2]bool
    • 0: shutterLockout – Type: bool
    • 1: overtemperatureShutDownImminent – Type: bool
  • err – Type: error

Returns the spotmeter statistics, various temperatures, current resolution and status bits.

The spotmeter statistics are:

  • Index 0: Mean Temperature.
  • Index 1: Maximum Temperature.
  • Index 2: Minimum Temperature.
  • Index 3: Pixel Count of spotmeter region of interest.

The temperatures are:

  • Index 0: Focal Plain Array temperature.
  • Index 1: Focal Plain Array temperature at last FFC (Flat Field Correction).
  • Index 2: Housing temperature.
  • Index 3: Housing temperature at last FFC.

The resolution is either 0 to 6553 Kelvin or 0 to 655 Kelvin. If the resolution is the former, the temperatures are in Kelvin/10, if it is the latter the temperatures are in Kelvin/100.

FFC (Flat Field Correction) Status:

  • FFC Never Commanded: Only seen on startup before first FFC.
  • FFC Imminent: This state is entered 2 seconds prior to initiating FFC.
  • FFC In Progress: Flat field correction is started (shutter moves in front of lens and back). Takes about 1 second.
  • FFC Complete: Shutter is in waiting position again, FFC done.

Temperature warning bits:

  • Index 0: Shutter lockout (if true shutter is locked out because temperature is outside -10°C to +65°C)
  • Index 1: Overtemperature shut down imminent (goes true 10 seconds before shutdown)

The following constants are available for this function:

For resolution:

  • thermal_imaging_bricklet.Resolution0To6553Kelvin = 0
  • thermal_imaging_bricklet.Resolution0To655Kelvin = 1

For ffcStatus:

  • thermal_imaging_bricklet.FFCStatusNeverCommanded = 0
  • thermal_imaging_bricklet.FFCStatusImminent = 1
  • thermal_imaging_bricklet.FFCStatusInProgress = 2
  • thermal_imaging_bricklet.FFCStatusComplete = 3
func (*ThermalImagingBricklet) SetResolution(resolution uint8) (err error)
Parameters:
  • resolution – Type: uint8, Range: See constants, Default: 1
Returns:
  • err – Type: error

Sets the resolution. The Thermal Imaging Bricklet can either measure

  • from 0 to 6553 Kelvin (-273.15°C to +6279.85°C) with 0.1°C resolution or
  • from 0 to 655 Kelvin (-273.15°C to +381.85°C) with 0.01°C resolution.

The accuracy is specified for -10°C to 450°C in the first range and -10°C and 140°C in the second range.

The following constants are available for this function:

For resolution:

  • thermal_imaging_bricklet.Resolution0To6553Kelvin = 0
  • thermal_imaging_bricklet.Resolution0To655Kelvin = 1
func (*ThermalImagingBricklet) GetResolution() (resolution uint8, err error)
Returns:
  • resolution – Type: uint8, Range: See constants
  • err – Type: error

Returns the resolution as set by SetResolution().

The following constants are available for this function:

For resolution:

  • thermal_imaging_bricklet.Resolution0To6553Kelvin = 0
  • thermal_imaging_bricklet.Resolution0To655Kelvin = 1
func (*ThermalImagingBricklet) SetSpotmeterConfig(regionOfInterest [4]uint8) (err error)
Parameters:
  • regionOfInterest – Type: [4]uint8
    • 0: firstColumn – Type: uint8, Range: [0 to 78], Default: 39
    • 1: firstRow – Type: uint8, Range: [0 to 58], Default: 29
    • 2: lastColumn – Type: uint8, Range: [1 to 79], Default: 40
    • 3: lastRow – Type: uint8, Range: [1 to 59], Default: 30
Returns:
  • err – Type: error

Sets the spotmeter region of interest. The 4 values are

  • Index 0: Column start (has to be smaller than column end).
  • Index 1: Row start (has to be smaller than row end).
  • Index 2: Column end (has to be smaller than 80).
  • Index 3: Row end (has to be smaller than 60).

The spotmeter statistics can be read out with GetStatistics().

func (*ThermalImagingBricklet) GetSpotmeterConfig() (regionOfInterest [4]uint8, err error)
Returns:
  • regionOfInterest – Type: [4]uint8
    • 0: firstColumn – Type: uint8, Range: [0 to 78], Default: 39
    • 1: firstRow – Type: uint8, Range: [0 to 58], Default: 29
    • 2: lastColumn – Type: uint8, Range: [1 to 79], Default: 40
    • 3: lastRow – Type: uint8, Range: [1 to 59], Default: 30
  • err – Type: error

Returns the spotmeter config as set by SetSpotmeterConfig().

func (*ThermalImagingBricklet) SetHighContrastConfig(regionOfInterest [4]uint8, dampeningFactor uint16, clipLimit [2]uint16, emptyCounts uint16) (err error)
Parameters:
  • regionOfInterest – Type: [4]uint8
    • 0: firstColumn – Type: uint8, Range: [0 to 79], Default: 0
    • 1: firstRow – Type: uint8, Range: [0 to 58], Default: 0
    • 2: lastColumn – Type: uint8, Range: [0 to 79], Default: 79
    • 3: lastRow – Type: uint8, Range: [1 to 59], Default: 59
  • dampeningFactor – Type: uint16, Range: [0 to 256], Default: 64
  • clipLimit – Type: [2]uint16
    • 0: agcHEQClipLimitHigh – Type: uint16, Range: [0 to 4800], Default: 4800
    • 1: agcHEQClipLimitLow – Type: uint16, Range: [0 to 210], Default: 29
  • emptyCounts – Type: uint16, Range: [0 to 214 - 1], Default: 2
Returns:
  • err – Type: error

Sets the high contrast region of interest, dampening factor, clip limit and empty counts. This config is only used in high contrast mode (see SetImageTransferConfig()).

The high contrast region of interest consists of four values:

  • Index 0: Column start (has to be smaller than or equal to column end).
  • Index 1: Row start (has to be smaller than row end).
  • Index 2: Column end (has to be smaller than 80).
  • Index 3: Row end (has to be smaller than 60).

The algorithm to generate the high contrast image is applied to this region.

Dampening Factor: This parameter is the amount of temporal dampening applied to the HEQ (history equalization) transformation function. An IIR filter of the form:

(N / 256) * previous + ((256 - N) / 256) * current

is applied, and the HEQ dampening factor represents the value N in the equation, i.e., a value that applies to the amount of influence the previous HEQ transformation function has on the current function. The lower the value of N the higher the influence of the current video frame whereas the higher the value of N the more influence the previous damped transfer function has.

Clip Limit Index 0 (AGC HEQ Clip Limit High): This parameter defines the maximum number of pixels allowed to accumulate in any given histogram bin. Any additional pixels in a given bin are clipped. The effect of this parameter is to limit the influence of highly-populated bins on the resulting HEQ transformation function.

Clip Limit Index 1 (AGC HEQ Clip Limit Low): This parameter defines an artificial population that is added to every non-empty histogram bin. In other words, if the Clip Limit Low is set to L, a bin with an actual population of X will have an effective population of L + X. Any empty bin that is nearby a populated bin will be given an artificial population of L. The effect of higher values is to provide a more linear transfer function; lower values provide a more non-linear (equalized) transfer function.

Empty Counts: This parameter specifies the maximum number of pixels in a bin that will be interpreted as an empty bin. Histogram bins with this number of pixels or less will be processed as an empty bin.

func (*ThermalImagingBricklet) GetHighContrastConfig() (regionOfInterest [4]uint8, dampeningFactor uint16, clipLimit [2]uint16, emptyCounts uint16, err error)
Returns:
  • regionOfInterest – Type: [4]uint8
    • 0: firstColumn – Type: uint8, Range: [0 to 78], Default: 0
    • 1: firstRow – Type: uint8, Range: [0 to 58], Default: 0
    • 2: lastColumn – Type: uint8, Range: [1 to 79], Default: 79
    • 3: lastRow – Type: uint8, Range: [1 to 59], Default: 59
  • dampeningFactor – Type: uint16, Range: [0 to 256], Default: 64
  • clipLimit – Type: [2]uint16
    • 0: agcHEQClipLimitHigh – Type: uint16, Range: [0 to 4800], Default: 4800
    • 1: agcHEQClipLimitLow – Type: uint16, Range: [0 to 210], Default: 29
  • emptyCounts – Type: uint16, Range: [0 to 216 - 1], Default: 2
  • err – Type: error

Returns the high contrast config as set by SetHighContrastConfig().

Advanced Functions

func (*ThermalImagingBricklet) SetFluxLinearParameters(sceneEmissivity uint16, temperatureBackground uint16, tauWindow uint16, temperaturWindow uint16, tauAtmosphere uint16, temperatureAtmosphere uint16, reflectionWindow uint16, temperatureReflection uint16) (err error)
Parameters:
  • sceneEmissivity – Type: uint16, Unit: 25/2048 %, Range: [82 to 213], Default: 213
  • temperatureBackground – Type: uint16, Unit: 1/100 K, Range: [0 to 216 - 1], Default: 29515
  • tauWindow – Type: uint16, Unit: 25/2048 %, Range: [82 to 213], Default: 213
  • temperaturWindow – Type: uint16, Unit: 1/100 K, Range: [0 to 216 - 1], Default: 29515
  • tauAtmosphere – Type: uint16, Unit: 25/2048 %, Range: [82 to 213], Default: 213
  • temperatureAtmosphere – Type: uint16, Unit: 1/100 K, Range: [0 to 216 - 1], Default: 29515
  • reflectionWindow – Type: uint16, Unit: 25/2048 %, Range: [0 to 213], Default: 0
  • temperatureReflection – Type: uint16, Unit: 1/100 K, Range: [0 to 216 - 1], Default: 29515
Returns:
  • err – Type: error

Sets the flux linear parameters that can be used for radiometry calibration.

See FLIR document 102-PS245-100-01 for more details.

New in version 2.0.5 (Plugin).

func (*ThermalImagingBricklet) GetFluxLinearParameters() (sceneEmissivity uint16, temperatureBackground uint16, tauWindow uint16, temperaturWindow uint16, tauAtmosphere uint16, temperatureAtmosphere uint16, reflectionWindow uint16, temperatureReflection uint16, err error)
Returns:
  • sceneEmissivity – Type: uint16, Unit: 25/2048 %, Range: [82 to 213], Default: 213
  • temperatureBackground – Type: uint16, Unit: 1/100 K, Range: [0 to 216 - 1], Default: 29515
  • tauWindow – Type: uint16, Unit: 25/2048 %, Range: [82 to 213], Default: 213
  • temperaturWindow – Type: uint16, Unit: 1/100 K, Range: [0 to 216 - 1], Default: 29515
  • tauAtmosphere – Type: uint16, Unit: 25/2048 %, Range: [82 to 213], Default: 213
  • temperatureAtmosphere – Type: uint16, Unit: 1/100 K, Range: [0 to 216 - 1], Default: 29515
  • reflectionWindow – Type: uint16, Unit: 25/2048 %, Range: [0 to 213], Default: 0
  • temperatureReflection – Type: uint16, Unit: 1/100 K, Range: [0 to 216 - 1], Default: 29515
  • err – Type: error

Returns the flux linear parameters, as set by SetFluxLinearParameters().

New in version 2.0.5 (Plugin).

func (*ThermalImagingBricklet) SetFFCShutterMode(shutterMode uint8, tempLockoutState uint8, videoFreezeDuringFFC bool, ffcDesired bool, elapsedTimeSinceLastFFC uint32, desiredFFCPeriod uint32, explicitCmdToOpen bool, desiredFFCTempDelta uint16, imminentDelay uint16) (err error)
Parameters:
  • shutterMode – Type: uint8, Range: See constants, Default: 1
  • tempLockoutState – Type: uint8, Range: See constants, Default: 0
  • videoFreezeDuringFFC – Type: bool, Default: true
  • ffcDesired – Type: bool, Default: false
  • elapsedTimeSinceLastFFC – Type: uint32, Unit: 1 ms, Range: [0 to 232 - 1], Default: 0
  • desiredFFCPeriod – Type: uint32, Unit: 1 ms, Range: [0 to 232 - 1], Default: 300000
  • explicitCmdToOpen – Type: bool, Default: false
  • desiredFFCTempDelta – Type: uint16, Unit: 1/100 K, Range: [0 to 216 - 1], Default: 300
  • imminentDelay – Type: uint16, Range: [0 to 216 - 1], Default: 52
Returns:
  • err – Type: error

Sets the FFC shutter mode parameters.

See FLIR document 110-0144-03 4.5.15 for more details.

The following constants are available for this function:

For shutterMode:

  • thermal_imaging_bricklet.ShutterModeManual = 0
  • thermal_imaging_bricklet.ShutterModeAuto = 1
  • thermal_imaging_bricklet.ShutterModeExternal = 2

For tempLockoutState:

  • thermal_imaging_bricklet.ShutterLockoutInactive = 0
  • thermal_imaging_bricklet.ShutterLockoutHigh = 1
  • thermal_imaging_bricklet.ShutterLockoutLow = 2

New in version 2.0.6 (Plugin).

func (*ThermalImagingBricklet) GetFFCShutterMode() (shutterMode uint8, tempLockoutState uint8, videoFreezeDuringFFC bool, ffcDesired bool, elapsedTimeSinceLastFFC uint32, desiredFFCPeriod uint32, explicitCmdToOpen bool, desiredFFCTempDelta uint16, imminentDelay uint16, err error)
Returns:
  • shutterMode – Type: uint8, Range: See constants, Default: 1
  • tempLockoutState – Type: uint8, Range: See constants, Default: 0
  • videoFreezeDuringFFC – Type: bool, Default: true
  • ffcDesired – Type: bool, Default: false
  • elapsedTimeSinceLastFFC – Type: uint32, Unit: 1 ms, Range: [0 to 232 - 1], Default: 0
  • desiredFFCPeriod – Type: uint32, Unit: 1 ms, Range: [0 to 232 - 1], Default: 300000
  • explicitCmdToOpen – Type: bool, Default: false
  • desiredFFCTempDelta – Type: uint16, Unit: 1/100 K, Range: [0 to 216 - 1], Default: 300
  • imminentDelay – Type: uint16, Range: [0 to 216 - 1], Default: 52
  • err – Type: error

Sets the FFC shutter mode parameters.

See FLIR document 110-0144-03 4.5.15 for more details.

The following constants are available for this function:

For shutterMode:

  • thermal_imaging_bricklet.ShutterModeManual = 0
  • thermal_imaging_bricklet.ShutterModeAuto = 1
  • thermal_imaging_bricklet.ShutterModeExternal = 2

For tempLockoutState:

  • thermal_imaging_bricklet.ShutterLockoutInactive = 0
  • thermal_imaging_bricklet.ShutterLockoutHigh = 1
  • thermal_imaging_bricklet.ShutterLockoutLow = 2

New in version 2.0.6 (Plugin).

func (*ThermalImagingBricklet) RunFFCNormalization() (err error)
Returns:
  • err – Type: error

Starts the Flat-Field Correction (FFC) normalization.

See FLIR document 110-0144-03 4.5.16 for more details.

New in version 2.0.6 (Plugin).

func (*ThermalImagingBricklet) GetSPITFPErrorCount() (errorCountAckChecksum uint32, errorCountMessageChecksum uint32, errorCountFrame uint32, errorCountOverflow uint32, err error)
Returns:
  • errorCountAckChecksum – Type: uint32, Range: [0 to 232 - 1]
  • errorCountMessageChecksum – Type: uint32, Range: [0 to 232 - 1]
  • errorCountFrame – Type: uint32, Range: [0 to 232 - 1]
  • errorCountOverflow – Type: uint32, Range: [0 to 232 - 1]
  • err – Type: error

Returns the error count for the communication between Brick and Bricklet.

The errors are divided into

  • ACK checksum errors,
  • message checksum errors,
  • framing errors and
  • overflow errors.

The errors counts are for errors that occur on the Bricklet side. All Bricks have a similar function that returns the errors on the Brick side.

func (*ThermalImagingBricklet) SetStatusLEDConfig(config uint8) (err error)
Parameters:
  • config – Type: uint8, Range: See constants, Default: 3
Returns:
  • err – Type: error

Sets the status LED configuration. By default the LED shows communication traffic between Brick and Bricklet, it flickers once for every 10 received data packets.

You can also turn the LED permanently on/off or show a heartbeat.

If the Bricklet is in bootloader mode, the LED is will show heartbeat by default.

The following constants are available for this function:

For config:

  • thermal_imaging_bricklet.StatusLEDConfigOff = 0
  • thermal_imaging_bricklet.StatusLEDConfigOn = 1
  • thermal_imaging_bricklet.StatusLEDConfigShowHeartbeat = 2
  • thermal_imaging_bricklet.StatusLEDConfigShowStatus = 3
func (*ThermalImagingBricklet) GetStatusLEDConfig() (config uint8, err error)
Returns:
  • config – Type: uint8, Range: See constants, Default: 3
  • err – Type: error

Returns the configuration as set by SetStatusLEDConfig()

The following constants are available for this function:

For config:

  • thermal_imaging_bricklet.StatusLEDConfigOff = 0
  • thermal_imaging_bricklet.StatusLEDConfigOn = 1
  • thermal_imaging_bricklet.StatusLEDConfigShowHeartbeat = 2
  • thermal_imaging_bricklet.StatusLEDConfigShowStatus = 3
func (*ThermalImagingBricklet) GetChipTemperature() (temperature int16, err error)
Returns:
  • temperature – Type: int16, Unit: 1 °C, Range: [-215 to 215 - 1]
  • err – Type: error

Returns the temperature as measured inside the microcontroller. The value returned is not the ambient temperature!

The temperature is only proportional to the real temperature and it has bad accuracy. Practically it is only useful as an indicator for temperature changes.

func (*ThermalImagingBricklet) Reset() (err error)
Returns:
  • err – Type: error

Calling this function will reset the Bricklet. All configurations will be lost.

After a reset you have to create new device objects, calling functions on the existing ones will result in undefined behavior!

func (*ThermalImagingBricklet) GetIdentity() (uid string, connectedUid string, position rune, hardwareVersion [3]uint8, firmwareVersion [3]uint8, deviceIdentifier uint16, err error)
Returns:
  • uid – Type: string, Length: up to 8
  • connectedUid – Type: string, Length: up to 8
  • position – Type: rune, Range: ['a' to 'h', 'z']
  • hardwareVersion – Type: [3]uint8
    • 0: major – Type: uint8, Range: [0 to 255]
    • 1: minor – Type: uint8, Range: [0 to 255]
    • 2: revision – Type: uint8, Range: [0 to 255]
  • firmwareVersion – Type: [3]uint8
    • 0: major – Type: uint8, Range: [0 to 255]
    • 1: minor – Type: uint8, Range: [0 to 255]
    • 2: revision – Type: uint8, Range: [0 to 255]
  • deviceIdentifier – Type: uint16, Range: [0 to 216 - 1]
  • err – Type: error

Returns the UID, the UID where the Bricklet is connected to, the position, the hardware and firmware version as well as the device identifier.

The position can be 'a', 'b', 'c', 'd', 'e', 'f', 'g' or 'h' (Bricklet Port). A Bricklet connected to an Isolator Bricklet is always at position 'z'.

The device identifier numbers can be found here. There is also a constant for the device identifier of this Bricklet.

Callback Configuration Functions

func (*ThermalImagingBricklet) SetImageTransferConfig(config uint8) (err error)
Parameters:
  • config – Type: uint8, Range: See constants, Default: 0
Returns:
  • err – Type: error

The necessary bandwidth of this Bricklet is too high to use getter/callback or high contrast/temperature image at the same time. You have to configure the one you want to use, the Bricklet will optimize the internal configuration accordingly.

Corresponding functions:

The following constants are available for this function:

For config:

  • thermal_imaging_bricklet.ImageTransferManualHighContrastImage = 0
  • thermal_imaging_bricklet.ImageTransferManualTemperatureImage = 1
  • thermal_imaging_bricklet.ImageTransferCallbackHighContrastImage = 2
  • thermal_imaging_bricklet.ImageTransferCallbackTemperatureImage = 3
func (*ThermalImagingBricklet) GetImageTransferConfig() (config uint8, err error)
Returns:
  • config – Type: uint8, Range: See constants, Default: 0
  • err – Type: error

Returns the image transfer config, as set by SetImageTransferConfig().

The following constants are available for this function:

For config:

  • thermal_imaging_bricklet.ImageTransferManualHighContrastImage = 0
  • thermal_imaging_bricklet.ImageTransferManualTemperatureImage = 1
  • thermal_imaging_bricklet.ImageTransferCallbackHighContrastImage = 2
  • thermal_imaging_bricklet.ImageTransferCallbackTemperatureImage = 3

Callbacks

Callbacks can be registered to receive time critical or recurring data from the device. The registration is done with the corresponding Register*Callback function, which returns a unique callback ID. This ID can be used to deregister the callback later with the corresponding Deregister*Callback function.

Note

Using callbacks for recurring events is always preferred compared to using getters. It will use less USB bandwidth and the latency will be a lot better, since there is no round trip time.

func (*ThermalImagingBricklet) RegisterHighContrastImageCallback(func(image []uint8)) (registrationId uint64)
Callback Parameters:
  • image – Type: []uint8, Length: 4800, Range: [0 to 255]
Returns:
  • registrationId – Type: uint64

This callback is triggered with every new high contrast image if the transfer image config is configured for high contrast callback (see SetImageTransferConfig()).

The data is organized as a 8-bit value 80x60 pixel matrix linearized in a one-dimensional array. The data is arranged line by line from top left to bottom right.

Each 8-bit value represents one gray-scale image pixel that can directly be shown to a user on a display.

Note

If reconstructing the value fails, the callback is triggered with nil for image.

func (*ThermalImagingBricklet) RegisterTemperatureImageCallback(func(image []uint16)) (registrationId uint64)
Callback Parameters:
  • image – Type: []uint16, Length: 4800, Unit: ? K, Range: [0 to 216 - 1]
Returns:
  • registrationId – Type: uint64

This callback is triggered with every new temperature image if the transfer image config is configured for temperature callback (see SetImageTransferConfig()).

The data is organized as a 16-bit value 80x60 pixel matrix linearized in a one-dimensional array. The data is arranged line by line from top left to bottom right.

Each 16-bit value represents one temperature measurement in either Kelvin/10 or Kelvin/100 (depending on the resolution set with SetResolution()).

Note

If reconstructing the value fails, the callback is triggered with nil for image.

Virtual Functions

Virtual functions don't communicate with the device itself, but operate only on the API bindings device object. They can be called without the corresponding IP Connection object being connected.

func (*ThermalImagingBricklet) GetAPIVersion() (apiVersion [3]uint8, err error)
Returns:
  • apiVersion – Type: [3]uint8
    • 0: major – Type: uint8, Range: [0 to 255]
    • 1: minor – Type: uint8, Range: [0 to 255]
    • 2: revision – Type: uint8, Range: [0 to 255]
  • err – Type: error

Returns the version of the API definition implemented by this API bindings. This is neither the release version of this API bindings nor does it tell you anything about the represented Brick or Bricklet.

func (*ThermalImagingBricklet) GetResponseExpected(functionId uint8) (responseExpected bool, err error)
Parameters:
  • functionId – Type: uint8, Range: See constants
Returns:
  • responseExpected – Type: bool
  • err – Type: error

Returns the response expected flag for the function specified by the function ID parameter. It is true if the function is expected to send a response, false otherwise.

For getter functions this is enabled by default and cannot be disabled, because those functions will always send a response. For callback configuration functions it is enabled by default too, but can be disabled by SetResponseExpected(). For setter functions it is disabled by default and can be enabled.

Enabling the response expected flag for a setter function allows to detect timeouts and other error conditions calls of this setter as well. The device will then send a response for this purpose. If this flag is disabled for a setter function then no response is sent and errors are silently ignored, because they cannot be detected.

The following constants are available for this function:

For functionId:

  • thermal_imaging_bricklet.FunctionSetResolution = 4
  • thermal_imaging_bricklet.FunctionSetSpotmeterConfig = 6
  • thermal_imaging_bricklet.FunctionSetHighContrastConfig = 8
  • thermal_imaging_bricklet.FunctionSetImageTransferConfig = 10
  • thermal_imaging_bricklet.FunctionSetFluxLinearParameters = 14
  • thermal_imaging_bricklet.FunctionSetFFCShutterMode = 16
  • thermal_imaging_bricklet.FunctionRunFFCNormalization = 18
  • thermal_imaging_bricklet.FunctionSetWriteFirmwarePointer = 237
  • thermal_imaging_bricklet.FunctionSetStatusLEDConfig = 239
  • thermal_imaging_bricklet.FunctionReset = 243
  • thermal_imaging_bricklet.FunctionWriteUID = 248
func (*ThermalImagingBricklet) SetResponseExpected(functionId uint8, responseExpected bool) (err error)
Parameters:
  • functionId – Type: uint8, Range: See constants
  • responseExpected – Type: bool
Returns:
  • err – Type: error

Changes the response expected flag of the function specified by the function ID parameter. This flag can only be changed for setter (default value: false) and callback configuration functions (default value: true). For getter functions it is always enabled.

Enabling the response expected flag for a setter function allows to detect timeouts and other error conditions calls of this setter as well. The device will then send a response for this purpose. If this flag is disabled for a setter function then no response is sent and errors are silently ignored, because they cannot be detected.

The following constants are available for this function:

For functionId:

  • thermal_imaging_bricklet.FunctionSetResolution = 4
  • thermal_imaging_bricklet.FunctionSetSpotmeterConfig = 6
  • thermal_imaging_bricklet.FunctionSetHighContrastConfig = 8
  • thermal_imaging_bricklet.FunctionSetImageTransferConfig = 10
  • thermal_imaging_bricklet.FunctionSetFluxLinearParameters = 14
  • thermal_imaging_bricklet.FunctionSetFFCShutterMode = 16
  • thermal_imaging_bricklet.FunctionRunFFCNormalization = 18
  • thermal_imaging_bricklet.FunctionSetWriteFirmwarePointer = 237
  • thermal_imaging_bricklet.FunctionSetStatusLEDConfig = 239
  • thermal_imaging_bricklet.FunctionReset = 243
  • thermal_imaging_bricklet.FunctionWriteUID = 248
func (*ThermalImagingBricklet) SetResponseExpectedAll(responseExpected bool) (err error)
Parameters:
  • responseExpected – Type: bool
Returns:
  • err – Type: error

Changes the response expected flag for all setter and callback configuration functions of this device at once.

Internal Functions

Internal functions are used for maintenance tasks such as flashing a new firmware of changing the UID of a Bricklet. These task should be performed using Brick Viewer instead of using the internal functions directly.

func (*ThermalImagingBricklet) SetBootloaderMode(mode uint8) (status uint8, err error)
Parameters:
  • mode – Type: uint8, Range: See constants
Returns:
  • status – Type: uint8, Range: See constants
  • err – Type: error

Sets the bootloader mode and returns the status after the requested mode change was instigated.

You can change from bootloader mode to firmware mode and vice versa. A change from bootloader mode to firmware mode will only take place if the entry function, device identifier and CRC are present and correct.

This function is used by Brick Viewer during flashing. It should not be necessary to call it in a normal user program.

The following constants are available for this function:

For mode:

  • thermal_imaging_bricklet.BootloaderModeBootloader = 0
  • thermal_imaging_bricklet.BootloaderModeFirmware = 1
  • thermal_imaging_bricklet.BootloaderModeBootloaderWaitForReboot = 2
  • thermal_imaging_bricklet.BootloaderModeFirmwareWaitForReboot = 3
  • thermal_imaging_bricklet.BootloaderModeFirmwareWaitForEraseAndReboot = 4

For status:

  • thermal_imaging_bricklet.BootloaderStatusOK = 0
  • thermal_imaging_bricklet.BootloaderStatusInvalidMode = 1
  • thermal_imaging_bricklet.BootloaderStatusNoChange = 2
  • thermal_imaging_bricklet.BootloaderStatusEntryFunctionNotPresent = 3
  • thermal_imaging_bricklet.BootloaderStatusDeviceIdentifierIncorrect = 4
  • thermal_imaging_bricklet.BootloaderStatusCRCMismatch = 5
func (*ThermalImagingBricklet) GetBootloaderMode() (mode uint8, err error)
Returns:
  • mode – Type: uint8, Range: See constants
  • err – Type: error

Returns the current bootloader mode, see SetBootloaderMode().

The following constants are available for this function:

For mode:

  • thermal_imaging_bricklet.BootloaderModeBootloader = 0
  • thermal_imaging_bricklet.BootloaderModeFirmware = 1
  • thermal_imaging_bricklet.BootloaderModeBootloaderWaitForReboot = 2
  • thermal_imaging_bricklet.BootloaderModeFirmwareWaitForReboot = 3
  • thermal_imaging_bricklet.BootloaderModeFirmwareWaitForEraseAndReboot = 4
func (*ThermalImagingBricklet) SetWriteFirmwarePointer(pointer uint32) (err error)
Parameters:
  • pointer – Type: uint32, Unit: 1 B, Range: [0 to 232 - 1]
Returns:
  • err – Type: error

Sets the firmware pointer for WriteFirmware(). The pointer has to be increased by chunks of size 64. The data is written to flash every 4 chunks (which equals to one page of size 256).

This function is used by Brick Viewer during flashing. It should not be necessary to call it in a normal user program.

func (*ThermalImagingBricklet) WriteFirmware(data [64]uint8) (status uint8, err error)
Parameters:
  • data – Type: [64]uint8, Range: [0 to 255]
Returns:
  • status – Type: uint8, Range: [0 to 255]
  • err – Type: error

Writes 64 Bytes of firmware at the position as written by SetWriteFirmwarePointer() before. The firmware is written to flash every 4 chunks.

You can only write firmware in bootloader mode.

This function is used by Brick Viewer during flashing. It should not be necessary to call it in a normal user program.

func (*ThermalImagingBricklet) WriteUID(uid uint32) (err error)
Parameters:
  • uid – Type: uint32, Range: [0 to 232 - 1]
Returns:
  • err – Type: error

Writes a new UID into flash. If you want to set a new UID you have to decode the Base58 encoded UID string into an integer first.

We recommend that you use Brick Viewer to change the UID.

func (*ThermalImagingBricklet) ReadUID() (uid uint32, err error)
Returns:
  • uid – Type: uint32, Range: [0 to 232 - 1]
  • err – Type: error

Returns the current UID as an integer. Encode as Base58 to get the usual string version.

Constants

thermal_imaging_bricklet.DeviceIdentifier

This constant is used to identify a Thermal Imaging Bricklet.

The GetIdentity() function and the (*IPConnection) RegisterEnumerateCallback callback of the IPConnection have a deviceIdentifier parameter to specify the Brick's or Bricklet's type.

thermal_imaging_bricklet.DeviceDisplayName

This constant represents the human readable name of a Thermal Imaging Bricklet.