LabVIEW - GPS Bricklet 2.0

This is the description of the LabVIEW API bindings for the GPS Bricklet 2.0. General information and technical specifications for the GPS Bricklet 2.0 are summarized in its hardware description.

An installation guide for the LabVIEW API bindings is part of their general description.

API

Generally, every function of the LabVIEW bindings that outputs a value can report a Tinkerforge.TimeoutException. This error gets reported if the device did not respond. If a cable based connection is used, it is unlikely that this exception gets thrown (assuming nobody plugs the device out). However, if a wireless connection is used, timeouts will occur if the distance to the device gets too big.

The namespace for all Brick/Bricklet bindings and the IPConnection is Tinkerforge.*.

Basic Functions

BrickletGPSV2(uid, ipcon) → gpsV2
Input:
  • uid – Type: String
  • ipcon – Type: .NET Refnum (IPConnection)
Output:
  • gpsV2 – Type: .NET Refnum (BrickletGPSV2)

Creates an object with the unique device ID uid. This object can then be used after the IP Connection is connected.

BrickletGPSV2.GetCoordinates() → latitude, ns, longitude, ew
Output:
  • latitude – Type: Int64, Unit: 1/1000000 °, Range: [0 to 90000000]
  • ns – Type: Char, Range: ["N", "S"]
  • longitude – Type: Int64, Unit: 1/1000000 °, Range: [0 to 180000000]
  • ew – Type: Char, Range: ["E", "W"]

Returns the GPS coordinates. Latitude and longitude are given in the DD.dddddd° format, the value 57123468 means 57.123468°. The parameter ns and ew are the cardinal directions for latitude and longitude. Possible values for ns and ew are 'N', 'S', 'E' and 'W' (north, south, east and west).

This data is only valid if there is currently a fix as indicated by GetStatus().

BrickletGPSV2.GetStatus() → hasFix, satellitesView
Output:
  • hasFix – Type: Boolean
  • satellitesView – Type: Byte, Range: [0 to 255]

Returns if a fix is currently available as well as the number of satellites that are in view.

There is also a green LED on the Bricklet that indicates the fix status.

BrickletGPSV2.GetAltitude() → altitude, geoidalSeparation
Output:
  • altitude – Type: Int32, Unit: 1 cm, Range: [-231 to 231 - 1]
  • geoidalSeparation – Type: Int32, Unit: 1 cm, Range: [-231 to 231 - 1]

Returns the current altitude and corresponding geoidal separation.

This data is only valid if there is currently a fix as indicated by GetStatus().

BrickletGPSV2.GetMotion() → course, speed
Output:
  • course – Type: Int64, Unit: 1/100 °, Range: [0 to 36000]
  • speed – Type: Int64, Unit: 1/100 km/h, Range: [0 to 232 - 1]

Returns the current course and speed. A course of 0° means the Bricklet is traveling north bound and 90° means it is traveling east bound.

Please note that this only returns useful values if an actual movement is present.

This data is only valid if there is currently a fix as indicated by GetStatus().

BrickletGPSV2.GetDateTime() → date, time
Output:
  • date – Type: Int64, Range: [10100 to 311299]
  • time – Type: Int64, Range: [0 to 235959999]

Returns the current date and time. The date is given in the format ddmmyy and the time is given in the format hhmmss.sss. For example, 140713 means 14.07.13 as date and 195923568 means 19:59:23.568 as time.

BrickletGPSV2.GetSatelliteSystemStatus(satelliteSystem) → satelliteNumbers, fix, pdop, hdop, vdop
Input:
  • satelliteSystem – Type: Byte, Range: See constants
Output:
  • satelliteNumbers – Type: Byte[], Length: variable, Range: [0 to 255]
  • fix – Type: Byte, Range: See constants
  • pdop – Type: Int32, Unit: 1/100, Range: [0 to 216 - 1]
  • hdop – Type: Int32, Unit: 1/100, Range: [0 to 216 - 1]
  • vdop – Type: Int32, Unit: 1/100, Range: [0 to 216 - 1]

Returns the

  • satellite numbers list (up to 12 items)
  • fix value,
  • PDOP value,
  • HDOP value and
  • VDOP value

for a given satellite system. Currently GPS and GLONASS are supported, Galileo is not yet supported.

The GPS and GLONASS satellites have unique numbers and the satellite list gives the numbers of the satellites that are currently utilized. The number 0 is not a valid satellite number and can be ignored in the list.

The following constants are available for this function:

For satelliteSystem:

  • BrickletGPSV2.SATELLITE_SYSTEM_GPS = 0
  • BrickletGPSV2.SATELLITE_SYSTEM_GLONASS = 1
  • BrickletGPSV2.SATELLITE_SYSTEM_GALILEO = 2

For fix:

  • BrickletGPSV2.FIX_NO_FIX = 1
  • BrickletGPSV2.FIX_2D_FIX = 2
  • BrickletGPSV2.FIX_3D_FIX = 3
BrickletGPSV2.GetSatelliteStatus(satelliteSystem, satelliteNumber) → elevation, azimuth, snr
Input:
  • satelliteSystem – Type: Byte, Range: See constants
  • satelliteNumber – Type: Byte, Range: [1 to 32]
Output:
  • elevation – Type: Int16, Unit: 1 °, Range: [0 to 90]
  • azimuth – Type: Int16, Unit: 1 °, Range: [0 to 359]
  • snr – Type: Int16, Unit: 1 dB, Range: [0 to 99]

Returns the current elevation, azimuth and SNR for a given satellite and satellite system.

The satellite number here always goes from 1 to 32. For GLONASS it corresponds to the satellites 65-96.

Galileo is not yet supported.

The following constants are available for this function:

For satelliteSystem:

  • BrickletGPSV2.SATELLITE_SYSTEM_GPS = 0
  • BrickletGPSV2.SATELLITE_SYSTEM_GLONASS = 1
  • BrickletGPSV2.SATELLITE_SYSTEM_GALILEO = 2

Advanced Functions

BrickletGPSV2.Restart(restartType)
Input:
  • restartType – Type: Byte, Range: See constants

Restarts the GPS Bricklet, the following restart types are available:

Value Description
0 Hot start (use all available data in the NV store)
1 Warm start (don't use ephemeris at restart)
2 Cold start (don't use time, position, almanacs and ephemeris at restart)
3 Factory reset (clear all system/user configurations at restart)

The following constants are available for this function:

For restartType:

  • BrickletGPSV2.RESTART_TYPE_HOT_START = 0
  • BrickletGPSV2.RESTART_TYPE_WARM_START = 1
  • BrickletGPSV2.RESTART_TYPE_COLD_START = 2
  • BrickletGPSV2.RESTART_TYPE_FACTORY_RESET = 3
BrickletGPSV2.SetFixLEDConfig(config)
Input:
  • config – Type: Byte, Range: See constants, Default: 3

Sets the fix LED configuration. By default the LED shows if the Bricklet got a GPS fix yet. If a fix is established the LED turns on. If there is no fix then the LED is turned off.

You can also turn the LED permanently on/off, show a heartbeat or let it blink in sync with the PPS (pulse per second) output of the GPS module.

If the Bricklet is in bootloader mode, the LED is off.

The following constants are available for this function:

For config:

  • BrickletGPSV2.FIX_LED_CONFIG_OFF = 0
  • BrickletGPSV2.FIX_LED_CONFIG_ON = 1
  • BrickletGPSV2.FIX_LED_CONFIG_SHOW_HEARTBEAT = 2
  • BrickletGPSV2.FIX_LED_CONFIG_SHOW_FIX = 3
  • BrickletGPSV2.FIX_LED_CONFIG_SHOW_PPS = 4
BrickletGPSV2.GetFixLEDConfig() → config
Output:
  • config – Type: Byte, Range: See constants, Default: 3

Returns the configuration as set by SetFixLEDConfig()

The following constants are available for this function:

For config:

  • BrickletGPSV2.FIX_LED_CONFIG_OFF = 0
  • BrickletGPSV2.FIX_LED_CONFIG_ON = 1
  • BrickletGPSV2.FIX_LED_CONFIG_SHOW_HEARTBEAT = 2
  • BrickletGPSV2.FIX_LED_CONFIG_SHOW_FIX = 3
  • BrickletGPSV2.FIX_LED_CONFIG_SHOW_PPS = 4
BrickletGPSV2.SetSBASConfig(sbasConfig)
Input:
  • sbasConfig – Type: Byte, Range: See constants, Default: 0

If SBAS is enabled, the position accuracy increases (if SBAS satellites are in view), but the update rate is limited to 5Hz. With SBAS disabled the update rate is increased to 10Hz.

The following constants are available for this function:

For sbasConfig:

  • BrickletGPSV2.SBAS_ENABLED = 0
  • BrickletGPSV2.SBAS_DISABLED = 1

New in version 2.0.2 (Plugin).

BrickletGPSV2.GetSBASConfig() → sbasConfig
Output:
  • sbasConfig – Type: Byte, Range: See constants, Default: 0

Returns the SBAS configuration as set by SetSBASConfig()

The following constants are available for this function:

For sbasConfig:

  • BrickletGPSV2.SBAS_ENABLED = 0
  • BrickletGPSV2.SBAS_DISABLED = 1

New in version 2.0.2 (Plugin).

BrickletGPSV2.GetSPITFPErrorCount() → errorCountAckChecksum, errorCountMessageChecksum, errorCountFrame, errorCountOverflow
Output:
  • errorCountAckChecksum – Type: Int64, Range: [0 to 232 - 1]
  • errorCountMessageChecksum – Type: Int64, Range: [0 to 232 - 1]
  • errorCountFrame – Type: Int64, Range: [0 to 232 - 1]
  • errorCountOverflow – Type: Int64, Range: [0 to 232 - 1]

Returns the error count for the communication between Brick and Bricklet.

The errors are divided into

  • ACK checksum errors,
  • message checksum errors,
  • framing errors and
  • overflow errors.

The errors counts are for errors that occur on the Bricklet side. All Bricks have a similar function that returns the errors on the Brick side.

BrickletGPSV2.SetStatusLEDConfig(config)
Input:
  • config – Type: Byte, Range: See constants, Default: 3

Sets the status LED configuration. By default the LED shows communication traffic between Brick and Bricklet, it flickers once for every 10 received data packets.

You can also turn the LED permanently on/off or show a heartbeat.

If the Bricklet is in bootloader mode, the LED is will show heartbeat by default.

The following constants are available for this function:

For config:

  • BrickletGPSV2.STATUS_LED_CONFIG_OFF = 0
  • BrickletGPSV2.STATUS_LED_CONFIG_ON = 1
  • BrickletGPSV2.STATUS_LED_CONFIG_SHOW_HEARTBEAT = 2
  • BrickletGPSV2.STATUS_LED_CONFIG_SHOW_STATUS = 3
BrickletGPSV2.GetStatusLEDConfig() → config
Output:
  • config – Type: Byte, Range: See constants, Default: 3

Returns the configuration as set by SetStatusLEDConfig()

The following constants are available for this function:

For config:

  • BrickletGPSV2.STATUS_LED_CONFIG_OFF = 0
  • BrickletGPSV2.STATUS_LED_CONFIG_ON = 1
  • BrickletGPSV2.STATUS_LED_CONFIG_SHOW_HEARTBEAT = 2
  • BrickletGPSV2.STATUS_LED_CONFIG_SHOW_STATUS = 3
BrickletGPSV2.GetChipTemperature() → temperature
Output:
  • temperature – Type: Int16, Unit: 1 °C, Range: [-215 to 215 - 1]

Returns the temperature as measured inside the microcontroller. The value returned is not the ambient temperature!

The temperature is only proportional to the real temperature and it has bad accuracy. Practically it is only useful as an indicator for temperature changes.

BrickletGPSV2.Reset()

Calling this function will reset the Bricklet. All configurations will be lost.

After a reset you have to create new device objects, calling functions on the existing ones will result in undefined behavior!

BrickletGPSV2.GetIdentity() → uid, connectedUid, position, hardwareVersion, firmwareVersion, deviceIdentifier
Output:
  • uid – Type: String, Length: up to 8
  • connectedUid – Type: String, Length: up to 8
  • position – Type: Char, Range: ["a" to "h", "z"]
  • hardwareVersion – Type: Byte[3]
    • 0: major – Type: Byte, Range: [0 to 255]
    • 1: minor – Type: Byte, Range: [0 to 255]
    • 2: revision – Type: Byte, Range: [0 to 255]
  • firmwareVersion – Type: Byte[3]
    • 0: major – Type: Byte, Range: [0 to 255]
    • 1: minor – Type: Byte, Range: [0 to 255]
    • 2: revision – Type: Byte, Range: [0 to 255]
  • deviceIdentifier – Type: Int32, Range: [0 to 216 - 1]

Returns the UID, the UID where the Bricklet is connected to, the position, the hardware and firmware version as well as the device identifier.

The position can be 'a', 'b', 'c', 'd', 'e', 'f', 'g' or 'h' (Bricklet Port). A Bricklet connected to an Isolator Bricklet is always at position 'z'.

The device identifier numbers can be found here. There is also a constant for the device identifier of this Bricklet.

Callback Configuration Functions

BrickletGPSV2.SetCoordinatesCallbackPeriod(period)
Input:
  • period – Type: Int64, Unit: 1 ms, Range: [0 to 232 - 1], Default: 0

Sets the period with which the CoordinatesCallback callback is triggered periodically. A value of 0 turns the callback off.

The CoordinatesCallback callback is only triggered if the coordinates changed since the last triggering.

BrickletGPSV2.GetCoordinatesCallbackPeriod() → period
Output:
  • period – Type: Int64, Unit: 1 ms, Range: [0 to 232 - 1], Default: 0

Returns the period as set by SetCoordinatesCallbackPeriod().

BrickletGPSV2.SetStatusCallbackPeriod(period)
Input:
  • period – Type: Int64, Unit: 1 ms, Range: [0 to 232 - 1], Default: 0

Sets the period with which the StatusCallback callback is triggered periodically. A value of 0 turns the callback off.

The StatusCallback callback is only triggered if the status changed since the last triggering.

BrickletGPSV2.GetStatusCallbackPeriod() → period
Output:
  • period – Type: Int64, Unit: 1 ms, Range: [0 to 232 - 1], Default: 0

Returns the period as set by SetStatusCallbackPeriod().

BrickletGPSV2.SetAltitudeCallbackPeriod(period)
Input:
  • period – Type: Int64, Unit: 1 ms, Range: [0 to 232 - 1], Default: 0

Sets the period with which the AltitudeCallback callback is triggered periodically. A value of 0 turns the callback off.

The AltitudeCallback callback is only triggered if the altitude changed since the last triggering.

BrickletGPSV2.GetAltitudeCallbackPeriod() → period
Output:
  • period – Type: Int64, Unit: 1 ms, Range: [0 to 232 - 1], Default: 0

Returns the period as set by SetAltitudeCallbackPeriod().

BrickletGPSV2.SetMotionCallbackPeriod(period)
Input:
  • period – Type: Int64, Unit: 1 ms, Range: [0 to 232 - 1], Default: 0

Sets the period with which the MotionCallback callback is triggered periodically. A value of 0 turns the callback off.

The MotionCallback callback is only triggered if the motion changed since the last triggering.

BrickletGPSV2.GetMotionCallbackPeriod() → period
Output:
  • period – Type: Int64, Unit: 1 ms, Range: [0 to 232 - 1], Default: 0

Returns the period as set by SetMotionCallbackPeriod().

BrickletGPSV2.SetDateTimeCallbackPeriod(period)
Input:
  • period – Type: Int64, Unit: 1 ms, Range: [0 to 232 - 1], Default: 0

Sets the period with which the DateTimeCallback callback is triggered periodically. A value of 0 turns the callback off.

The DateTimeCallback callback is only triggered if the date or time changed since the last triggering.

BrickletGPSV2.GetDateTimeCallbackPeriod() → period
Output:
  • period – Type: Int64, Unit: 1 ms, Range: [0 to 232 - 1], Default: 0

Returns the period as set by SetDateTimeCallbackPeriod().

Callbacks

Callbacks can be registered to receive time critical or recurring data from the device. The registration is done by assigning a function to a callback property of the device object. The available callback property and their type of parameters are described below.

Note

Using callbacks for recurring events is always preferred compared to using getters. It will use less USB bandwidth and the latency will be a lot better, since there is no round trip time.

event BrickletGPSV2.PulsePerSecondCallback → sender
Callback Output:
  • sender – Type: .NET Refnum (BrickletGPSV2)

This callback is triggered precisely once per second, see PPS.

The precision of two subsequent pulses will be skewed because of the latency in the USB/RS485/Ethernet connection. But in the long run this will be very precise. For example a count of 3600 pulses will take exactly 1 hour.

event BrickletGPSV2.CoordinatesCallback → sender, latitude, ns, longitude, ew
Callback Output:
  • sender – Type: .NET Refnum (BrickletGPSV2)
  • latitude – Type: Int64, Unit: 1/1000000 °, Range: [0 to 90000000]
  • ns – Type: Char, Range: ["N", "S"]
  • longitude – Type: Int64, Unit: 1/1000000 °, Range: [0 to 180000000]
  • ew – Type: Char, Range: ["E", "W"]

This callback is triggered periodically with the period that is set by SetCoordinatesCallbackPeriod(). The parameters are the same as for GetCoordinates().

The CoordinatesCallback callback is only triggered if the coordinates changed since the last triggering and if there is currently a fix as indicated by GetStatus().

event BrickletGPSV2.StatusCallback → sender, hasFix, satellitesView
Callback Output:
  • sender – Type: .NET Refnum (BrickletGPSV2)
  • hasFix – Type: Boolean
  • satellitesView – Type: Byte, Range: [0 to 255]

This callback is triggered periodically with the period that is set by SetStatusCallbackPeriod(). The parameters are the same as for GetStatus().

The StatusCallback callback is only triggered if the status changed since the last triggering.

event BrickletGPSV2.AltitudeCallback → sender, altitude, geoidalSeparation
Callback Output:
  • sender – Type: .NET Refnum (BrickletGPSV2)
  • altitude – Type: Int32, Unit: 1 cm, Range: [-231 to 231 - 1]
  • geoidalSeparation – Type: Int32, Unit: 1 cm, Range: [-231 to 231 - 1]

This callback is triggered periodically with the period that is set by SetAltitudeCallbackPeriod(). The parameters are the same as for GetAltitude().

The AltitudeCallback callback is only triggered if the altitude changed since the last triggering and if there is currently a fix as indicated by GetStatus().

event BrickletGPSV2.MotionCallback → sender, course, speed
Callback Output:
  • sender – Type: .NET Refnum (BrickletGPSV2)
  • course – Type: Int64, Unit: 1/100 °, Range: [0 to 36000]
  • speed – Type: Int64, Unit: 1/100 km/h, Range: [0 to 232 - 1]

This callback is triggered periodically with the period that is set by SetMotionCallbackPeriod(). The parameters are the same as for GetMotion().

The MotionCallback callback is only triggered if the motion changed since the last triggering and if there is currently a fix as indicated by GetStatus().

event BrickletGPSV2.DateTimeCallback → sender, date, time
Callback Output:
  • sender – Type: .NET Refnum (BrickletGPSV2)
  • date – Type: Int64, Range: [10100 to 311299]
  • time – Type: Int64, Range: [0 to 235959999]

This callback is triggered periodically with the period that is set by SetDateTimeCallbackPeriod(). The parameters are the same as for GetDateTime().

The DateTimeCallback callback is only triggered if the date or time changed since the last triggering.

Virtual Functions

Virtual functions don't communicate with the device itself, but operate only on the API bindings device object. They can be called without the corresponding IP Connection object being connected.

BrickletGPSV2.GetAPIVersion() → apiVersion
Output:
  • apiVersion – Type: Byte[3]
    • 0: major – Type: Byte, Range: [0 to 255]
    • 1: minor – Type: Byte, Range: [0 to 255]
    • 2: revision – Type: Byte, Range: [0 to 255]

Returns the version of the API definition implemented by this API bindings. This is neither the release version of this API bindings nor does it tell you anything about the represented Brick or Bricklet.

BrickletGPSV2.GetResponseExpected(functionId) → responseExpected
Input:
  • functionId – Type: Byte, Range: See constants
Output:
  • responseExpected – Type: Boolean

Returns the response expected flag for the function specified by the function ID parameter. It is true if the function is expected to send a response, false otherwise.

For getter functions this is enabled by default and cannot be disabled, because those functions will always send a response. For callback configuration functions it is enabled by default too, but can be disabled by SetResponseExpected(). For setter functions it is disabled by default and can be enabled.

Enabling the response expected flag for a setter function allows to detect timeouts and other error conditions calls of this setter as well. The device will then send a response for this purpose. If this flag is disabled for a setter function then no response is sent and errors are silently ignored, because they cannot be detected.

The following constants are available for this function:

For functionId:

  • BrickletGPSV2.FUNCTION_RESTART = 6
  • BrickletGPSV2.FUNCTION_SET_FIX_LED_CONFIG = 9
  • BrickletGPSV2.FUNCTION_SET_COORDINATES_CALLBACK_PERIOD = 11
  • BrickletGPSV2.FUNCTION_SET_STATUS_CALLBACK_PERIOD = 13
  • BrickletGPSV2.FUNCTION_SET_ALTITUDE_CALLBACK_PERIOD = 15
  • BrickletGPSV2.FUNCTION_SET_MOTION_CALLBACK_PERIOD = 17
  • BrickletGPSV2.FUNCTION_SET_DATE_TIME_CALLBACK_PERIOD = 19
  • BrickletGPSV2.FUNCTION_SET_SBAS_CONFIG = 27
  • BrickletGPSV2.FUNCTION_SET_WRITE_FIRMWARE_POINTER = 237
  • BrickletGPSV2.FUNCTION_SET_STATUS_LED_CONFIG = 239
  • BrickletGPSV2.FUNCTION_RESET = 243
  • BrickletGPSV2.FUNCTION_WRITE_UID = 248
BrickletGPSV2.SetResponseExpected(functionId, responseExpected)
Input:
  • functionId – Type: Byte, Range: See constants
  • responseExpected – Type: Boolean

Changes the response expected flag of the function specified by the function ID parameter. This flag can only be changed for setter (default value: false) and callback configuration functions (default value: true). For getter functions it is always enabled.

Enabling the response expected flag for a setter function allows to detect timeouts and other error conditions calls of this setter as well. The device will then send a response for this purpose. If this flag is disabled for a setter function then no response is sent and errors are silently ignored, because they cannot be detected.

The following constants are available for this function:

For functionId:

  • BrickletGPSV2.FUNCTION_RESTART = 6
  • BrickletGPSV2.FUNCTION_SET_FIX_LED_CONFIG = 9
  • BrickletGPSV2.FUNCTION_SET_COORDINATES_CALLBACK_PERIOD = 11
  • BrickletGPSV2.FUNCTION_SET_STATUS_CALLBACK_PERIOD = 13
  • BrickletGPSV2.FUNCTION_SET_ALTITUDE_CALLBACK_PERIOD = 15
  • BrickletGPSV2.FUNCTION_SET_MOTION_CALLBACK_PERIOD = 17
  • BrickletGPSV2.FUNCTION_SET_DATE_TIME_CALLBACK_PERIOD = 19
  • BrickletGPSV2.FUNCTION_SET_SBAS_CONFIG = 27
  • BrickletGPSV2.FUNCTION_SET_WRITE_FIRMWARE_POINTER = 237
  • BrickletGPSV2.FUNCTION_SET_STATUS_LED_CONFIG = 239
  • BrickletGPSV2.FUNCTION_RESET = 243
  • BrickletGPSV2.FUNCTION_WRITE_UID = 248
BrickletGPSV2.SetResponseExpectedAll(responseExpected)
Input:
  • responseExpected – Type: Boolean

Changes the response expected flag for all setter and callback configuration functions of this device at once.

Internal Functions

Internal functions are used for maintenance tasks such as flashing a new firmware of changing the UID of a Bricklet. These task should be performed using Brick Viewer instead of using the internal functions directly.

BrickletGPSV2.SetBootloaderMode(mode) → status
Input:
  • mode – Type: Byte, Range: See constants
Output:
  • status – Type: Byte, Range: See constants

Sets the bootloader mode and returns the status after the requested mode change was instigated.

You can change from bootloader mode to firmware mode and vice versa. A change from bootloader mode to firmware mode will only take place if the entry function, device identifier and CRC are present and correct.

This function is used by Brick Viewer during flashing. It should not be necessary to call it in a normal user program.

The following constants are available for this function:

For mode:

  • BrickletGPSV2.BOOTLOADER_MODE_BOOTLOADER = 0
  • BrickletGPSV2.BOOTLOADER_MODE_FIRMWARE = 1
  • BrickletGPSV2.BOOTLOADER_MODE_BOOTLOADER_WAIT_FOR_REBOOT = 2
  • BrickletGPSV2.BOOTLOADER_MODE_FIRMWARE_WAIT_FOR_REBOOT = 3
  • BrickletGPSV2.BOOTLOADER_MODE_FIRMWARE_WAIT_FOR_ERASE_AND_REBOOT = 4

For status:

  • BrickletGPSV2.BOOTLOADER_STATUS_OK = 0
  • BrickletGPSV2.BOOTLOADER_STATUS_INVALID_MODE = 1
  • BrickletGPSV2.BOOTLOADER_STATUS_NO_CHANGE = 2
  • BrickletGPSV2.BOOTLOADER_STATUS_ENTRY_FUNCTION_NOT_PRESENT = 3
  • BrickletGPSV2.BOOTLOADER_STATUS_DEVICE_IDENTIFIER_INCORRECT = 4
  • BrickletGPSV2.BOOTLOADER_STATUS_CRC_MISMATCH = 5
BrickletGPSV2.GetBootloaderMode() → mode
Output:
  • mode – Type: Byte, Range: See constants

Returns the current bootloader mode, see SetBootloaderMode().

The following constants are available for this function:

For mode:

  • BrickletGPSV2.BOOTLOADER_MODE_BOOTLOADER = 0
  • BrickletGPSV2.BOOTLOADER_MODE_FIRMWARE = 1
  • BrickletGPSV2.BOOTLOADER_MODE_BOOTLOADER_WAIT_FOR_REBOOT = 2
  • BrickletGPSV2.BOOTLOADER_MODE_FIRMWARE_WAIT_FOR_REBOOT = 3
  • BrickletGPSV2.BOOTLOADER_MODE_FIRMWARE_WAIT_FOR_ERASE_AND_REBOOT = 4
BrickletGPSV2.SetWriteFirmwarePointer(pointer)
Input:
  • pointer – Type: Int64, Unit: 1 B, Range: [0 to 232 - 1]

Sets the firmware pointer for WriteFirmware(). The pointer has to be increased by chunks of size 64. The data is written to flash every 4 chunks (which equals to one page of size 256).

This function is used by Brick Viewer during flashing. It should not be necessary to call it in a normal user program.

BrickletGPSV2.WriteFirmware(data) → status
Input:
  • data – Type: Byte[64], Range: [0 to 255]
Output:
  • status – Type: Byte, Range: [0 to 255]

Writes 64 Bytes of firmware at the position as written by SetWriteFirmwarePointer() before. The firmware is written to flash every 4 chunks.

You can only write firmware in bootloader mode.

This function is used by Brick Viewer during flashing. It should not be necessary to call it in a normal user program.

BrickletGPSV2.WriteUID(uid)
Input:
  • uid – Type: Int64, Range: [0 to 232 - 1]

Writes a new UID into flash. If you want to set a new UID you have to decode the Base58 encoded UID string into an integer first.

We recommend that you use Brick Viewer to change the UID.

BrickletGPSV2.ReadUID() → uid
Output:
  • uid – Type: Int64, Range: [0 to 232 - 1]

Returns the current UID as an integer. Encode as Base58 to get the usual string version.

Constants

BrickletGPSV2.DEVICE_IDENTIFIER

This constant is used to identify a GPS Bricklet 2.0.

The GetIdentity() function and the IPConnection.EnumerateCallback callback of the IP Connection have a deviceIdentifier parameter to specify the Brick's or Bricklet's type.

BrickletGPSV2.DEVICE_DISPLAY_NAME

This constant represents the human readable name of a GPS Bricklet 2.0.