LabVIEW - RS232 Bricklet 2.0

This is the description of the LabVIEW API bindings for the RS232 Bricklet 2.0. General information and technical specifications for the RS232 Bricklet 2.0 are summarized in its hardware description.

An installation guide for the LabVIEW API bindings is part of their general description.

API

Generally, every function of the LabVIEW bindings that outputs a value can report a Tinkerforge.TimeoutException. This error gets reported if the device did not respond. If a cable based connection is used, it is unlikely that this exception gets thrown (assuming nobody plugs the device out). However, if a wireless connection is used, timeouts will occur if the distance to the device gets too big.

The namespace for all Brick/Bricklet bindings and the IPConnection is Tinkerforge.*.

Basic Functions

BrickletRS232V2(uid, ipcon) → rs232V2
Input:
  • uid – Type: String
  • ipcon – Type: .NET Refnum (IPConnection)
Output:
  • rs232V2 – Type: .NET Refnum (BrickletRS232V2)

Creates an object with the unique device ID uid. This object can then be used after the IP Connection is connected.

BrickletRS232V2.Write(message) → messageWritten
Input:
  • message – Type: Char[], Length: variable
Output:
  • messageWritten – Type: Int32, Range: [0 to 216 - 1]

Writes characters to the RS232 interface. The characters can be binary data, ASCII or similar is not necessary.

The return value is the number of characters that were written.

See SetConfiguration() for configuration possibilities regarding baud rate, parity and so on.

BrickletRS232V2.Read(length) → message
Input:
  • length – Type: Int32, Range: [0 to 216 - 1]
Output:
  • message – Type: Char[], Length: variable

Returns up to length characters from receive buffer.

Instead of polling with this function, you can also use callbacks. But note that this function will return available data only when the read callback is disabled. See EnableReadCallback() and ReadCallback callback.

BrickletRS232V2.SetConfiguration(baudrate, parity, stopbits, wordlength, flowcontrol)
Input:
  • baudrate – Type: Int64, Unit: 1 Bd, Range: [100 to 2000000], Default: 115200
  • parity – Type: Byte, Range: See constants, Default: 0
  • stopbits – Type: Byte, Range: See constants, Default: 1
  • wordlength – Type: Byte, Range: See constants, Default: 8
  • flowcontrol – Type: Byte, Range: See constants, Default: 0

Sets the configuration for the RS232 communication.

The following constants are available for this function:

For parity:

  • BrickletRS232V2.PARITY_NONE = 0
  • BrickletRS232V2.PARITY_ODD = 1
  • BrickletRS232V2.PARITY_EVEN = 2

For stopbits:

  • BrickletRS232V2.STOPBITS_1 = 1
  • BrickletRS232V2.STOPBITS_2 = 2

For wordlength:

  • BrickletRS232V2.WORDLENGTH_5 = 5
  • BrickletRS232V2.WORDLENGTH_6 = 6
  • BrickletRS232V2.WORDLENGTH_7 = 7
  • BrickletRS232V2.WORDLENGTH_8 = 8

For flowcontrol:

  • BrickletRS232V2.FLOWCONTROL_OFF = 0
  • BrickletRS232V2.FLOWCONTROL_SOFTWARE = 1
  • BrickletRS232V2.FLOWCONTROL_HARDWARE = 2
BrickletRS232V2.GetConfiguration() → baudrate, parity, stopbits, wordlength, flowcontrol
Output:
  • baudrate – Type: Int64, Unit: 1 Bd, Range: [100 to 2000000], Default: 115200
  • parity – Type: Byte, Range: See constants, Default: 0
  • stopbits – Type: Byte, Range: See constants, Default: 1
  • wordlength – Type: Byte, Range: See constants, Default: 8
  • flowcontrol – Type: Byte, Range: See constants, Default: 0

Returns the configuration as set by SetConfiguration().

The following constants are available for this function:

For parity:

  • BrickletRS232V2.PARITY_NONE = 0
  • BrickletRS232V2.PARITY_ODD = 1
  • BrickletRS232V2.PARITY_EVEN = 2

For stopbits:

  • BrickletRS232V2.STOPBITS_1 = 1
  • BrickletRS232V2.STOPBITS_2 = 2

For wordlength:

  • BrickletRS232V2.WORDLENGTH_5 = 5
  • BrickletRS232V2.WORDLENGTH_6 = 6
  • BrickletRS232V2.WORDLENGTH_7 = 7
  • BrickletRS232V2.WORDLENGTH_8 = 8

For flowcontrol:

  • BrickletRS232V2.FLOWCONTROL_OFF = 0
  • BrickletRS232V2.FLOWCONTROL_SOFTWARE = 1
  • BrickletRS232V2.FLOWCONTROL_HARDWARE = 2

Advanced Functions

BrickletRS232V2.SetBufferConfig(sendBufferSize, receiveBufferSize)
Input:
  • sendBufferSize – Type: Int32, Unit: 1 B, Range: [210 to 9216], Default: 5120
  • receiveBufferSize – Type: Int32, Unit: 1 B, Range: [210 to 9216], Default: 5120

Sets the send and receive buffer size in byte. In total the buffers have to be 10240 byte (10KiB) in size, the minimum buffer size is 1024 byte (1KiB) for each.

The current buffer content is lost if this function is called.

The send buffer holds data that is given by Write() and can not be written yet. The receive buffer holds data that is received through RS232 but could not yet be send to the user, either by Read() or through ReadCallback callback.

BrickletRS232V2.GetBufferConfig() → sendBufferSize, receiveBufferSize
Output:
  • sendBufferSize – Type: Int32, Unit: 1 B, Range: [210 to 9216], Default: 5120
  • receiveBufferSize – Type: Int32, Unit: 1 B, Range: [210 to 9216], Default: 5120

Returns the buffer configuration as set by SetBufferConfig().

BrickletRS232V2.GetBufferStatus() → sendBufferUsed, receiveBufferUsed
Output:
  • sendBufferUsed – Type: Int32, Unit: 1 B, Range: [0 to 9216]
  • receiveBufferUsed – Type: Int32, Unit: 1 B, Range: [0 to 9216]

Returns the currently used bytes for the send and received buffer.

See SetBufferConfig() for buffer size configuration.

BrickletRS232V2.GetErrorCount() → errorCountOverrun, errorCountParity
Output:
  • errorCountOverrun – Type: Int64, Range: [0 to 232 - 1]
  • errorCountParity – Type: Int64, Range: [0 to 232 - 1]

Returns the current number of overrun and parity errors.

BrickletRS232V2.GetSPITFPErrorCount() → errorCountAckChecksum, errorCountMessageChecksum, errorCountFrame, errorCountOverflow
Output:
  • errorCountAckChecksum – Type: Int64, Range: [0 to 232 - 1]
  • errorCountMessageChecksum – Type: Int64, Range: [0 to 232 - 1]
  • errorCountFrame – Type: Int64, Range: [0 to 232 - 1]
  • errorCountOverflow – Type: Int64, Range: [0 to 232 - 1]

Returns the error count for the communication between Brick and Bricklet.

The errors are divided into

  • ACK checksum errors,
  • message checksum errors,
  • framing errors and
  • overflow errors.

The errors counts are for errors that occur on the Bricklet side. All Bricks have a similar function that returns the errors on the Brick side.

BrickletRS232V2.SetStatusLEDConfig(config)
Input:
  • config – Type: Byte, Range: See constants, Default: 3

Sets the status LED configuration. By default the LED shows communication traffic between Brick and Bricklet, it flickers once for every 10 received data packets.

You can also turn the LED permanently on/off or show a heartbeat.

If the Bricklet is in bootloader mode, the LED is will show heartbeat by default.

The following constants are available for this function:

For config:

  • BrickletRS232V2.STATUS_LED_CONFIG_OFF = 0
  • BrickletRS232V2.STATUS_LED_CONFIG_ON = 1
  • BrickletRS232V2.STATUS_LED_CONFIG_SHOW_HEARTBEAT = 2
  • BrickletRS232V2.STATUS_LED_CONFIG_SHOW_STATUS = 3
BrickletRS232V2.GetStatusLEDConfig() → config
Output:
  • config – Type: Byte, Range: See constants, Default: 3

Returns the configuration as set by SetStatusLEDConfig()

The following constants are available for this function:

For config:

  • BrickletRS232V2.STATUS_LED_CONFIG_OFF = 0
  • BrickletRS232V2.STATUS_LED_CONFIG_ON = 1
  • BrickletRS232V2.STATUS_LED_CONFIG_SHOW_HEARTBEAT = 2
  • BrickletRS232V2.STATUS_LED_CONFIG_SHOW_STATUS = 3
BrickletRS232V2.GetChipTemperature() → temperature
Output:
  • temperature – Type: Int16, Unit: 1 °C, Range: [-215 to 215 - 1]

Returns the temperature as measured inside the microcontroller. The value returned is not the ambient temperature!

The temperature is only proportional to the real temperature and it has bad accuracy. Practically it is only useful as an indicator for temperature changes.

BrickletRS232V2.Reset()

Calling this function will reset the Bricklet. All configurations will be lost.

After a reset you have to create new device objects, calling functions on the existing ones will result in undefined behavior!

BrickletRS232V2.GetIdentity() → uid, connectedUid, position, hardwareVersion, firmwareVersion, deviceIdentifier
Output:
  • uid – Type: String, Length: up to 8
  • connectedUid – Type: String, Length: up to 8
  • position – Type: Char, Range: ["a" to "h", "z"]
  • hardwareVersion – Type: Byte[3]
    • 0: major – Type: Byte, Range: [0 to 255]
    • 1: minor – Type: Byte, Range: [0 to 255]
    • 2: revision – Type: Byte, Range: [0 to 255]
  • firmwareVersion – Type: Byte[3]
    • 0: major – Type: Byte, Range: [0 to 255]
    • 1: minor – Type: Byte, Range: [0 to 255]
    • 2: revision – Type: Byte, Range: [0 to 255]
  • deviceIdentifier – Type: Int32, Range: [0 to 216 - 1]

Returns the UID, the UID where the Bricklet is connected to, the position, the hardware and firmware version as well as the device identifier.

The position can be 'a', 'b', 'c', 'd', 'e', 'f', 'g' or 'h' (Bricklet Port). A Bricklet connected to an Isolator Bricklet is always at position 'z'.

The device identifier numbers can be found here. There is also a constant for the device identifier of this Bricklet.

Callback Configuration Functions

BrickletRS232V2.EnableReadCallback()

Enables the ReadCallback callback. This will disable the FrameReadableCallback callback.

By default the callback is disabled.

BrickletRS232V2.DisableReadCallback()

Disables the ReadCallback callback.

By default the callback is disabled.

BrickletRS232V2.IsReadCallbackEnabled() → enabled
Output:
  • enabled – Type: Boolean, Default: F

Returns true if the ReadCallback callback is enabled, false otherwise.

BrickletRS232V2.SetFrameReadableCallbackConfiguration(frameSize)
Input:
  • frameSize – Type: Int32, Unit: 1 B, Range: [0 to 9216], Default: 0

Configures the FrameReadableCallback callback. The frame size is the number of bytes, that have to be readable to trigger the callback. A frame size of 0 disables the callback. A frame size greater than 0 enables the callback and disables the ReadCallback callback.

By default the callback is disabled.

New in version 2.0.3 (Plugin).

BrickletRS232V2.GetFrameReadableCallbackConfiguration() → frameSize
Output:
  • frameSize – Type: Int32, Unit: 1 B, Range: [0 to 9216], Default: 0

Returns the callback configuration as set by SetFrameReadableCallbackConfiguration().

New in version 2.0.3 (Plugin).

Callbacks

Callbacks can be registered to receive time critical or recurring data from the device. The registration is done by assigning a function to a callback property of the device object. The available callback property and their type of parameters are described below.

Note

Using callbacks for recurring events is always preferred compared to using getters. It will use less USB bandwidth and the latency will be a lot better, since there is no round trip time.

event BrickletRS232V2.ReadCallback → sender, message
Callback Output:
  • sender – Type: .NET Refnum (BrickletRS232V2)
  • message – Type: Char[], Length: variable

This callback is called if new data is available.

To enable this callback, use EnableReadCallback().

Note

If reconstructing the value fails, the callback is triggered with null for message.

event BrickletRS232V2.ErrorCountCallback → sender, errorCountOverrun, errorCountParity
Callback Output:
  • sender – Type: .NET Refnum (BrickletRS232V2)
  • errorCountOverrun – Type: Int64, Range: [0 to 232 - 1]
  • errorCountParity – Type: Int64, Range: [0 to 232 - 1]

This callback is called if a new error occurs. It returns the current overrun and parity error count.

event BrickletRS232V2.FrameReadableCallback → sender, frameCount
Callback Output:
  • sender – Type: .NET Refnum (BrickletRS232V2)
  • frameCount – Type: Int32, Range: [0 to 216 - 1]

This callback is called if at least one frame of data is readable. The frame size is configured with SetFrameReadableCallbackConfiguration(). The frame count parameter is the number of frames that can be read. This callback is triggered only once until Read() is called. This means, that if you have configured a frame size of X bytes, you can read exactly X bytes using the Read() function, every time the callback triggers without checking the frame count parameter.

New in version 2.0.3 (Plugin).

Virtual Functions

Virtual functions don't communicate with the device itself, but operate only on the API bindings device object. They can be called without the corresponding IP Connection object being connected.

BrickletRS232V2.GetAPIVersion() → apiVersion
Output:
  • apiVersion – Type: Byte[3]
    • 0: major – Type: Byte, Range: [0 to 255]
    • 1: minor – Type: Byte, Range: [0 to 255]
    • 2: revision – Type: Byte, Range: [0 to 255]

Returns the version of the API definition implemented by this API bindings. This is neither the release version of this API bindings nor does it tell you anything about the represented Brick or Bricklet.

BrickletRS232V2.GetResponseExpected(functionId) → responseExpected
Input:
  • functionId – Type: Byte, Range: See constants
Output:
  • responseExpected – Type: Boolean

Returns the response expected flag for the function specified by the function ID parameter. It is true if the function is expected to send a response, false otherwise.

For getter functions this is enabled by default and cannot be disabled, because those functions will always send a response. For callback configuration functions it is enabled by default too, but can be disabled by SetResponseExpected(). For setter functions it is disabled by default and can be enabled.

Enabling the response expected flag for a setter function allows to detect timeouts and other error conditions calls of this setter as well. The device will then send a response for this purpose. If this flag is disabled for a setter function then no response is sent and errors are silently ignored, because they cannot be detected.

The following constants are available for this function:

For functionId:

  • BrickletRS232V2.FUNCTION_ENABLE_READ_CALLBACK = 3
  • BrickletRS232V2.FUNCTION_DISABLE_READ_CALLBACK = 4
  • BrickletRS232V2.FUNCTION_SET_CONFIGURATION = 6
  • BrickletRS232V2.FUNCTION_SET_BUFFER_CONFIG = 8
  • BrickletRS232V2.FUNCTION_SET_FRAME_READABLE_CALLBACK_CONFIGURATION = 14
  • BrickletRS232V2.FUNCTION_SET_WRITE_FIRMWARE_POINTER = 237
  • BrickletRS232V2.FUNCTION_SET_STATUS_LED_CONFIG = 239
  • BrickletRS232V2.FUNCTION_RESET = 243
  • BrickletRS232V2.FUNCTION_WRITE_UID = 248
BrickletRS232V2.SetResponseExpected(functionId, responseExpected)
Input:
  • functionId – Type: Byte, Range: See constants
  • responseExpected – Type: Boolean

Changes the response expected flag of the function specified by the function ID parameter. This flag can only be changed for setter (default value: false) and callback configuration functions (default value: true). For getter functions it is always enabled.

Enabling the response expected flag for a setter function allows to detect timeouts and other error conditions calls of this setter as well. The device will then send a response for this purpose. If this flag is disabled for a setter function then no response is sent and errors are silently ignored, because they cannot be detected.

The following constants are available for this function:

For functionId:

  • BrickletRS232V2.FUNCTION_ENABLE_READ_CALLBACK = 3
  • BrickletRS232V2.FUNCTION_DISABLE_READ_CALLBACK = 4
  • BrickletRS232V2.FUNCTION_SET_CONFIGURATION = 6
  • BrickletRS232V2.FUNCTION_SET_BUFFER_CONFIG = 8
  • BrickletRS232V2.FUNCTION_SET_FRAME_READABLE_CALLBACK_CONFIGURATION = 14
  • BrickletRS232V2.FUNCTION_SET_WRITE_FIRMWARE_POINTER = 237
  • BrickletRS232V2.FUNCTION_SET_STATUS_LED_CONFIG = 239
  • BrickletRS232V2.FUNCTION_RESET = 243
  • BrickletRS232V2.FUNCTION_WRITE_UID = 248
BrickletRS232V2.SetResponseExpectedAll(responseExpected)
Input:
  • responseExpected – Type: Boolean

Changes the response expected flag for all setter and callback configuration functions of this device at once.

Internal Functions

Internal functions are used for maintenance tasks such as flashing a new firmware of changing the UID of a Bricklet. These task should be performed using Brick Viewer instead of using the internal functions directly.

BrickletRS232V2.SetBootloaderMode(mode) → status
Input:
  • mode – Type: Byte, Range: See constants
Output:
  • status – Type: Byte, Range: See constants

Sets the bootloader mode and returns the status after the requested mode change was instigated.

You can change from bootloader mode to firmware mode and vice versa. A change from bootloader mode to firmware mode will only take place if the entry function, device identifier and CRC are present and correct.

This function is used by Brick Viewer during flashing. It should not be necessary to call it in a normal user program.

The following constants are available for this function:

For mode:

  • BrickletRS232V2.BOOTLOADER_MODE_BOOTLOADER = 0
  • BrickletRS232V2.BOOTLOADER_MODE_FIRMWARE = 1
  • BrickletRS232V2.BOOTLOADER_MODE_BOOTLOADER_WAIT_FOR_REBOOT = 2
  • BrickletRS232V2.BOOTLOADER_MODE_FIRMWARE_WAIT_FOR_REBOOT = 3
  • BrickletRS232V2.BOOTLOADER_MODE_FIRMWARE_WAIT_FOR_ERASE_AND_REBOOT = 4

For status:

  • BrickletRS232V2.BOOTLOADER_STATUS_OK = 0
  • BrickletRS232V2.BOOTLOADER_STATUS_INVALID_MODE = 1
  • BrickletRS232V2.BOOTLOADER_STATUS_NO_CHANGE = 2
  • BrickletRS232V2.BOOTLOADER_STATUS_ENTRY_FUNCTION_NOT_PRESENT = 3
  • BrickletRS232V2.BOOTLOADER_STATUS_DEVICE_IDENTIFIER_INCORRECT = 4
  • BrickletRS232V2.BOOTLOADER_STATUS_CRC_MISMATCH = 5
BrickletRS232V2.GetBootloaderMode() → mode
Output:
  • mode – Type: Byte, Range: See constants

Returns the current bootloader mode, see SetBootloaderMode().

The following constants are available for this function:

For mode:

  • BrickletRS232V2.BOOTLOADER_MODE_BOOTLOADER = 0
  • BrickletRS232V2.BOOTLOADER_MODE_FIRMWARE = 1
  • BrickletRS232V2.BOOTLOADER_MODE_BOOTLOADER_WAIT_FOR_REBOOT = 2
  • BrickletRS232V2.BOOTLOADER_MODE_FIRMWARE_WAIT_FOR_REBOOT = 3
  • BrickletRS232V2.BOOTLOADER_MODE_FIRMWARE_WAIT_FOR_ERASE_AND_REBOOT = 4
BrickletRS232V2.SetWriteFirmwarePointer(pointer)
Input:
  • pointer – Type: Int64, Unit: 1 B, Range: [0 to 232 - 1]

Sets the firmware pointer for WriteFirmware(). The pointer has to be increased by chunks of size 64. The data is written to flash every 4 chunks (which equals to one page of size 256).

This function is used by Brick Viewer during flashing. It should not be necessary to call it in a normal user program.

BrickletRS232V2.WriteFirmware(data) → status
Input:
  • data – Type: Byte[64], Range: [0 to 255]
Output:
  • status – Type: Byte, Range: [0 to 255]

Writes 64 Bytes of firmware at the position as written by SetWriteFirmwarePointer() before. The firmware is written to flash every 4 chunks.

You can only write firmware in bootloader mode.

This function is used by Brick Viewer during flashing. It should not be necessary to call it in a normal user program.

BrickletRS232V2.WriteUID(uid)
Input:
  • uid – Type: Int64, Range: [0 to 232 - 1]

Writes a new UID into flash. If you want to set a new UID you have to decode the Base58 encoded UID string into an integer first.

We recommend that you use Brick Viewer to change the UID.

BrickletRS232V2.ReadUID() → uid
Output:
  • uid – Type: Int64, Range: [0 to 232 - 1]

Returns the current UID as an integer. Encode as Base58 to get the usual string version.

Constants

BrickletRS232V2.DEVICE_IDENTIFIER

This constant is used to identify a RS232 Bricklet 2.0.

The GetIdentity() function and the IPConnection.EnumerateCallback callback of the IP Connection have a deviceIdentifier parameter to specify the Brick's or Bricklet's type.

BrickletRS232V2.DEVICE_DISPLAY_NAME

This constant represents the human readable name of a RS232 Bricklet 2.0.