Perl - IMU Bricklet 3.0

This is the description of the Perl API bindings for the IMU Bricklet 3.0. General information and technical specifications for the IMU Bricklet 3.0 are summarized in its hardware description.

An installation guide for the Perl API bindings is part of their general description.

Examples

The example code below is Public Domain (CC0 1.0).

Simple

Download (example_simple.pl)

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
#!/usr/bin/perl

use strict;
use Tinkerforge::IPConnection;
use Tinkerforge::BrickletIMUV3;

use constant HOST => 'localhost';
use constant PORT => 4223;
use constant UID => 'XYZ'; # Change XYZ to the UID of your IMU Bricklet 3.0

my $ipcon = Tinkerforge::IPConnection->new(); # Create IP connection
my $imu = Tinkerforge::BrickletIMUV3->new(&UID, $ipcon); # Create device object

$ipcon->connect(&HOST, &PORT); # Connect to brickd
# Don't use device before ipcon is connected

# Get current quaternion
my ($w, $x, $y, $z) = $imu->get_quaternion();

print "Quaternion [W]: " . $w/16383.0 . "\n";
print "Quaternion [X]: " . $x/16383.0 . "\n";
print "Quaternion [Y]: " . $y/16383.0 . "\n";
print "Quaternion [Z]: " . $z/16383.0 . "\n";

print "Press key to exit\n";
<STDIN>;
$ipcon->disconnect();

Callback

Download (example_callback.pl)

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
#!/usr/bin/perl

use strict;
use Tinkerforge::IPConnection;
use Tinkerforge::BrickletIMUV3;

use constant HOST => 'localhost';
use constant PORT => 4223;
use constant UID => 'XYZ'; # Change XYZ to the UID of your IMU Bricklet 3.0

# Callback subroutine for quaternion callback
sub cb_quaternion
{
    my ($w, $x, $y, $z) = @_;

    print "Quaternion [W]: " . $w/16383.0 . "\n";
    print "Quaternion [X]: " . $x/16383.0 . "\n";
    print "Quaternion [Y]: " . $y/16383.0 . "\n";
    print "Quaternion [Z]: " . $z/16383.0 . "\n";
    print "\n";
}

my $ipcon = Tinkerforge::IPConnection->new(); # Create IP connection
my $imu = Tinkerforge::BrickletIMUV3->new(&UID, $ipcon); # Create device object

$ipcon->connect(&HOST, &PORT); # Connect to brickd
# Don't use device before ipcon is connected

# Register quaternion callback to subroutine cb_quaternion
$imu->register_callback($imu->CALLBACK_QUATERNION, 'cb_quaternion');

# Set period for quaternion callback to 0.1s (100ms)
$imu->set_quaternion_callback_configuration(100, 0);

print "Press key to exit\n";
<STDIN>;
$ipcon->disconnect();

All Data

Download (example_all_data.pl)

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
#!/usr/bin/perl

use strict;
use Tinkerforge::IPConnection;
use Tinkerforge::BrickletIMUV3;

use constant HOST => 'localhost';
use constant PORT => 4223;
use constant UID => 'XYZ'; # Change XYZ to the UID of your IMU Bricklet 3.0

# Callback subroutine for all data callback
sub cb_all_data
{
    my ($acceleration, $magnetic_field, $angular_velocity, $euler_angle, $quaternion,
        $linear_acceleration, $gravity_vector, $temperature, $calibration_status) = @_;

    print "Acceleration [X]: " . @{$acceleration}[0]/100.0 . " m/s²\n";
    print "Acceleration [Y]: " . @{$acceleration}[1]/100.0 . " m/s²\n";
    print "Acceleration [Z]: " . @{$acceleration}[2]/100.0 . " m/s²\n";
    print "Magnetic Field [X]: " . @{$magnetic_field}[0]/16.0 . " µT\n";
    print "Magnetic Field [Y]: " . @{$magnetic_field}[1]/16.0 . " µT\n";
    print "Magnetic Field [Z]: " . @{$magnetic_field}[2]/16.0 . " µT\n";
    print "Angular Velocity [X]: " . @{$angular_velocity}[0]/16.0 . " °/s\n";
    print "Angular Velocity [Y]: " . @{$angular_velocity}[1]/16.0 . " °/s\n";
    print "Angular Velocity [Z]: " . @{$angular_velocity}[2]/16.0 . " °/s\n";
    print "Euler Angle [Heading]: " . @{$euler_angle}[0]/16.0 . " °\n";
    print "Euler Angle [Roll]: " . @{$euler_angle}[1]/16.0 . " °\n";
    print "Euler Angle [Pitch]: " . @{$euler_angle}[2]/16.0 . " °\n";
    print "Quaternion [W]: " . @{$quaternion}[0]/16383.0 . "\n";
    print "Quaternion [X]: " . @{$quaternion}[1]/16383.0 . "\n";
    print "Quaternion [Y]: " . @{$quaternion}[2]/16383.0 . "\n";
    print "Quaternion [Z]: " . @{$quaternion}[3]/16383.0 . "\n";
    print "Linear Acceleration [X]: " . @{$linear_acceleration}[0]/100.0 . " m/s²\n";
    print "Linear Acceleration [Y]: " . @{$linear_acceleration}[1]/100.0 . " m/s²\n";
    print "Linear Acceleration [Z]: " . @{$linear_acceleration}[2]/100.0 . " m/s²\n";
    print "Gravity Vector [X]: " . @{$gravity_vector}[0]/100.0 . " m/s²\n";
    print "Gravity Vector [Y]: " . @{$gravity_vector}[1]/100.0 . " m/s²\n";
    print "Gravity Vector [Z]: " . @{$gravity_vector}[2]/100.0 . " m/s²\n";
    print "Temperature: $temperature °C\n";
    print "Calibration Status: " . sprintf('%08b', $calibration_status) . "\n";
    print "\n";
}

my $ipcon = Tinkerforge::IPConnection->new(); # Create IP connection
my $imu = Tinkerforge::BrickletIMUV3->new(&UID, $ipcon); # Create device object

$ipcon->connect(&HOST, &PORT); # Connect to brickd
# Don't use device before ipcon is connected

# Register all data callback to subroutine cb_all_data
$imu->register_callback($imu->CALLBACK_ALL_DATA, 'cb_all_data');

# Set period for all data callback to 0.1s (100ms)
$imu->set_all_data_callback_configuration(100, 0);

print "Press key to exit\n";
<STDIN>;
$ipcon->disconnect();

API

Generally, every subroutine of the Perl bindings can report an error as Tinkerforge::Error object via croak(). The object has a get_code() and a get_message() subroutine. There are different error code:

  • Error->ALREADY_CONNECTED = 11
  • Error->NOT_CONNECTED = 12
  • Error->CONNECT_FAILED = 13
  • Error->INVALID_FUNCTION_ID = 21
  • Error->TIMEOUT = 31
  • Error->INVALID_PARAMETER = 41
  • Error->FUNCTION_NOT_SUPPORTED = 42
  • Error->UNKNOWN_ERROR = 43
  • Error->STREAM_OUT_OF_SYNC = 51
  • Error->INVALID_UID = 61
  • Error->NON_ASCII_CHAR_IN_SECRET = 71
  • Error->WRONG_DEVICE_TYPE = 81
  • Error->DEVICE_REPLACED = 82
  • Error->WRONG_RESPONSE_LENGTH = 83

All functions listed below are thread-safe.

Basic Functions

BrickletIMUV3->new($uid, $ipcon)
Parameters:
  • $uid – Type: string
  • $ipcon – Type: IPConnection
Returns:
  • $imu_v3 – Type: BrickletIMUV3

Creates an object with the unique device ID $uid:

$imu_v3 = BrickletIMUV3->new("YOUR_DEVICE_UID", $ipcon);

This object can then be used after the IP Connection is connected.

BrickletIMUV3->get_orientation()
Return Array:
  • 0: $heading – Type: int, Unit: 1/16 °, Range: [0 to 5760]
  • 1: $roll – Type: int, Unit: 1/16 °, Range: [-1440 to 1440]
  • 2: $pitch – Type: int, Unit: 1/16 °, Range: [-2880 to 2880]

Returns the current orientation (heading, roll, pitch) of the IMU Brick as independent Euler angles. Note that Euler angles always experience a gimbal lock. We recommend that you use quaternions instead, if you need the absolute orientation.

If you want to get the orientation periodically, it is recommended to use the CALLBACK_ORIENTATION callback and set the period with set_orientation_callback_configuration().

BrickletIMUV3->get_linear_acceleration()
Return Array:
  • 0: $x – Type: int, Unit: 1 cm/s², Range: ?
  • 1: $y – Type: int, Unit: 1 cm/s², Range: ?
  • 2: $z – Type: int, Unit: 1 cm/s², Range: ?

Returns the linear acceleration of the IMU Brick for the x, y and z axis. The acceleration is in the range configured with set_sensor_configuration().

The linear acceleration is the acceleration in each of the three axis of the IMU Brick with the influences of gravity removed.

It is also possible to get the gravity vector with the influence of linear acceleration removed, see get_gravity_vector().

If you want to get the linear acceleration periodically, it is recommended to use the CALLBACK_LINEAR_ACCELERATION callback and set the period with set_linear_acceleration_callback_configuration().

BrickletIMUV3->get_gravity_vector()
Return Array:
  • 0: $x – Type: int, Unit: 1 cm/s², Range: [-981 to 981]
  • 1: $y – Type: int, Unit: 1 cm/s², Range: [-981 to 981]
  • 2: $z – Type: int, Unit: 1 cm/s², Range: [-981 to 981]

Returns the current gravity vector of the IMU Brick for the x, y and z axis.

The gravity vector is the acceleration that occurs due to gravity. Influences of additional linear acceleration are removed.

It is also possible to get the linear acceleration with the influence of gravity removed, see get_linear_acceleration().

If you want to get the gravity vector periodically, it is recommended to use the CALLBACK_GRAVITY_VECTOR callback and set the period with set_gravity_vector_callback_configuration().

BrickletIMUV3->get_quaternion()
Return Array:
  • 0: $w – Type: int, Unit: 1/16383, Range: [-214 + 1 to 214 - 1]
  • 1: $x – Type: int, Unit: 1/16383, Range: [-214 + 1 to 214 - 1]
  • 2: $y – Type: int, Unit: 1/16383, Range: [-214 + 1 to 214 - 1]
  • 3: $z – Type: int, Unit: 1/16383, Range: [-214 + 1 to 214 - 1]

Returns the current orientation (w, x, y, z) of the IMU Brick as quaternions.

You have to divide the return values by 16383 (14 bit) to get the usual range of -1.0 to +1.0 for quaternions.

If you want to get the quaternions periodically, it is recommended to use the CALLBACK_QUATERNION callback and set the period with set_quaternion_callback_configuration().

BrickletIMUV3->get_all_data()
Return Array:
  • 0: \@acceleration – Type: [int, ...], Length: 3
    • 0: $x – Type: int, Unit: 1 cm/s², Range: ?
    • 1: $y – Type: int, Unit: 1 cm/s², Range: ?
    • 2: $z – Type: int, Unit: 1 cm/s², Range: ?
  • 1: \@magnetic_field – Type: [int, ...], Length: 3
    • 0: $x – Type: int, Unit: 1/16 µT, Range: [-20800 to 20800]
    • 1: $y – Type: int, Unit: 1/16 µT, Range: [-20800 to 20800]
    • 2: $z – Type: int, Unit: 1/16 µT, Range: [-40000 to 40000]
  • 2: \@angular_velocity – Type: [int, ...], Length: 3
    • 0: $x – Type: int, Unit: 1/16 °/s, Range: ?
    • 1: $y – Type: int, Unit: 1/16 °/s, Range: ?
    • 2: $z – Type: int, Unit: 1/16 °/s, Range: ?
  • 3: \@euler_angle – Type: [int, ...], Length: 3
    • 0: $heading – Type: int, Unit: 1/16 °, Range: [0 to 5760]
    • 1: $roll – Type: int, Unit: 1/16 °, Range: [-1440 to 1440]
    • 2: $pitch – Type: int, Unit: 1/16 °, Range: [-2880 to 2880]
  • 4: \@quaternion – Type: [int, ...], Length: 4
    • 0: $w – Type: int, Unit: 1/16383, Range: [-214 + 1 to 214 - 1]
    • 1: $x – Type: int, Unit: 1/16383, Range: [-214 + 1 to 214 - 1]
    • 2: $y – Type: int, Unit: 1/16383, Range: [-214 + 1 to 214 - 1]
    • 3: $z – Type: int, Unit: 1/16383, Range: [-214 + 1 to 214 - 1]
  • 5: \@linear_acceleration – Type: [int, ...], Length: 3
    • 0: $x – Type: int, Unit: 1 cm/s², Range: ?
    • 1: $y – Type: int, Unit: 1 cm/s², Range: ?
    • 2: $z – Type: int, Unit: 1 cm/s², Range: ?
  • 6: \@gravity_vector – Type: [int, ...], Length: 3
    • 0: $x – Type: int, Unit: 1 cm/s², Range: [-981 to 981]
    • 1: $y – Type: int, Unit: 1 cm/s², Range: [-981 to 981]
    • 2: $z – Type: int, Unit: 1 cm/s², Range: [-981 to 981]
  • 7: $temperature – Type: int, Unit: 1 °C, Range: [-128 to 127]
  • 8: $calibration_status – Type: int, Range: [0 to 255]

Return all of the available data of the IMU Brick.

The calibration status consists of four pairs of two bits. Each pair of bits represents the status of the current calibration.

  • bit 0-1: Magnetometer
  • bit 2-3: Accelerometer
  • bit 4-5: Gyroscope
  • bit 6-7: System

A value of 0 means for "not calibrated" and a value of 3 means "fully calibrated". In your program you should always be able to ignore the calibration status, it is used by the calibration window of the Brick Viewer and it can be ignored after the first calibration. See the documentation in the calibration window for more information regarding the calibration of the IMU Brick.

If you want to get the data periodically, it is recommended to use the CALLBACK_ALL_DATA callback and set the period with set_all_data_callback_configuration().

Advanced Functions

BrickletIMUV3->get_acceleration()
Return Array:
  • 0: $x – Type: int, Unit: 1 cm/s², Range: ?
  • 1: $y – Type: int, Unit: 1 cm/s², Range: ?
  • 2: $z – Type: int, Unit: 1 cm/s², Range: ?

Returns the calibrated acceleration from the accelerometer for the x, y and z axis. The acceleration is in the range configured with set_sensor_configuration().

If you want to get the acceleration periodically, it is recommended to use the CALLBACK_ACCELERATION callback and set the period with set_acceleration_callback_configuration().

BrickletIMUV3->get_magnetic_field()
Return Array:
  • 0: $x – Type: int, Unit: 1/16 µT, Range: [-20800 to 20800]
  • 1: $y – Type: int, Unit: 1/16 µT, Range: [-20800 to 20800]
  • 2: $z – Type: int, Unit: 1/16 µT, Range: [-40000 to 40000]

Returns the calibrated magnetic field from the magnetometer for the x, y and z axis.

If you want to get the magnetic field periodically, it is recommended to use the CALLBACK_MAGNETIC_FIELD callback and set the period with set_magnetic_field_callback_configuration().

BrickletIMUV3->get_angular_velocity()
Return Array:
  • 0: $x – Type: int, Unit: 1/16 °/s, Range: ?
  • 1: $y – Type: int, Unit: 1/16 °/s, Range: ?
  • 2: $z – Type: int, Unit: 1/16 °/s, Range: ?

Returns the calibrated angular velocity from the gyroscope for the x, y and z axis. The angular velocity is in the range configured with set_sensor_configuration().

If you want to get the angular velocity periodically, it is recommended to use the CALLBACK_ANGULAR_VELOCITY acallback nd set the period with set_angular_velocity_callback_configuration().

BrickletIMUV3->get_temperature()
Returns:
  • $temperature – Type: int, Unit: 1 °C, Range: [-128 to 127]

Returns the temperature of the IMU Brick. The temperature is measured in the core of the BNO055 IC, it is not the ambient temperature

BrickletIMUV3->save_calibration()
Returns:
  • $calibration_done – Type: bool

A call of this function saves the current calibration to be used as a starting point for the next restart of continuous calibration of the IMU Brick.

A return value of true means that the calibration could be used and false means that it could not be used (this happens if the calibration status is not "fully calibrated").

This function is used by the calibration window of the Brick Viewer, you should not need to call it in your program.

BrickletIMUV3->set_sensor_configuration($magnetometer_rate, $gyroscope_range, $gyroscope_bandwidth, $accelerometer_range, $accelerometer_bandwidth)
Parameters:
  • $magnetometer_rate – Type: int, Range: See constants, Default: 5
  • $gyroscope_range – Type: int, Range: See constants, Default: 0
  • $gyroscope_bandwidth – Type: int, Range: See constants, Default: 7
  • $accelerometer_range – Type: int, Range: See constants, Default: 1
  • $accelerometer_bandwidth – Type: int, Range: See constants, Default: 3
Returns:
  • undef

Sets the available sensor configuration for the Magnetometer, Gyroscope and Accelerometer. The Accelerometer Range is user selectable in all fusion modes, all other configurations are auto-controlled in fusion mode.

The following constants are available for this function:

For $magnetometer_rate:

  • BrickletIMUV3->MAGNETOMETER_RATE_2HZ = 0
  • BrickletIMUV3->MAGNETOMETER_RATE_6HZ = 1
  • BrickletIMUV3->MAGNETOMETER_RATE_8HZ = 2
  • BrickletIMUV3->MAGNETOMETER_RATE_10HZ = 3
  • BrickletIMUV3->MAGNETOMETER_RATE_15HZ = 4
  • BrickletIMUV3->MAGNETOMETER_RATE_20HZ = 5
  • BrickletIMUV3->MAGNETOMETER_RATE_25HZ = 6
  • BrickletIMUV3->MAGNETOMETER_RATE_30HZ = 7

For $gyroscope_range:

  • BrickletIMUV3->GYROSCOPE_RANGE_2000DPS = 0
  • BrickletIMUV3->GYROSCOPE_RANGE_1000DPS = 1
  • BrickletIMUV3->GYROSCOPE_RANGE_500DPS = 2
  • BrickletIMUV3->GYROSCOPE_RANGE_250DPS = 3
  • BrickletIMUV3->GYROSCOPE_RANGE_125DPS = 4

For $gyroscope_bandwidth:

  • BrickletIMUV3->GYROSCOPE_BANDWIDTH_523HZ = 0
  • BrickletIMUV3->GYROSCOPE_BANDWIDTH_230HZ = 1
  • BrickletIMUV3->GYROSCOPE_BANDWIDTH_116HZ = 2
  • BrickletIMUV3->GYROSCOPE_BANDWIDTH_47HZ = 3
  • BrickletIMUV3->GYROSCOPE_BANDWIDTH_23HZ = 4
  • BrickletIMUV3->GYROSCOPE_BANDWIDTH_12HZ = 5
  • BrickletIMUV3->GYROSCOPE_BANDWIDTH_64HZ = 6
  • BrickletIMUV3->GYROSCOPE_BANDWIDTH_32HZ = 7

For $accelerometer_range:

  • BrickletIMUV3->ACCELEROMETER_RANGE_2G = 0
  • BrickletIMUV3->ACCELEROMETER_RANGE_4G = 1
  • BrickletIMUV3->ACCELEROMETER_RANGE_8G = 2
  • BrickletIMUV3->ACCELEROMETER_RANGE_16G = 3

For $accelerometer_bandwidth:

  • BrickletIMUV3->ACCELEROMETER_BANDWIDTH_7_81HZ = 0
  • BrickletIMUV3->ACCELEROMETER_BANDWIDTH_15_63HZ = 1
  • BrickletIMUV3->ACCELEROMETER_BANDWIDTH_31_25HZ = 2
  • BrickletIMUV3->ACCELEROMETER_BANDWIDTH_62_5HZ = 3
  • BrickletIMUV3->ACCELEROMETER_BANDWIDTH_125HZ = 4
  • BrickletIMUV3->ACCELEROMETER_BANDWIDTH_250HZ = 5
  • BrickletIMUV3->ACCELEROMETER_BANDWIDTH_500HZ = 6
  • BrickletIMUV3->ACCELEROMETER_BANDWIDTH_1000HZ = 7
BrickletIMUV3->get_sensor_configuration()
Return Array:
  • 0: $magnetometer_rate – Type: int, Range: See constants, Default: 5
  • 1: $gyroscope_range – Type: int, Range: See constants, Default: 0
  • 2: $gyroscope_bandwidth – Type: int, Range: See constants, Default: 7
  • 3: $accelerometer_range – Type: int, Range: See constants, Default: 1
  • 4: $accelerometer_bandwidth – Type: int, Range: See constants, Default: 3

Returns the sensor configuration as set by set_sensor_configuration().

The following constants are available for this function:

For $magnetometer_rate:

  • BrickletIMUV3->MAGNETOMETER_RATE_2HZ = 0
  • BrickletIMUV3->MAGNETOMETER_RATE_6HZ = 1
  • BrickletIMUV3->MAGNETOMETER_RATE_8HZ = 2
  • BrickletIMUV3->MAGNETOMETER_RATE_10HZ = 3
  • BrickletIMUV3->MAGNETOMETER_RATE_15HZ = 4
  • BrickletIMUV3->MAGNETOMETER_RATE_20HZ = 5
  • BrickletIMUV3->MAGNETOMETER_RATE_25HZ = 6
  • BrickletIMUV3->MAGNETOMETER_RATE_30HZ = 7

For $gyroscope_range:

  • BrickletIMUV3->GYROSCOPE_RANGE_2000DPS = 0
  • BrickletIMUV3->GYROSCOPE_RANGE_1000DPS = 1
  • BrickletIMUV3->GYROSCOPE_RANGE_500DPS = 2
  • BrickletIMUV3->GYROSCOPE_RANGE_250DPS = 3
  • BrickletIMUV3->GYROSCOPE_RANGE_125DPS = 4

For $gyroscope_bandwidth:

  • BrickletIMUV3->GYROSCOPE_BANDWIDTH_523HZ = 0
  • BrickletIMUV3->GYROSCOPE_BANDWIDTH_230HZ = 1
  • BrickletIMUV3->GYROSCOPE_BANDWIDTH_116HZ = 2
  • BrickletIMUV3->GYROSCOPE_BANDWIDTH_47HZ = 3
  • BrickletIMUV3->GYROSCOPE_BANDWIDTH_23HZ = 4
  • BrickletIMUV3->GYROSCOPE_BANDWIDTH_12HZ = 5
  • BrickletIMUV3->GYROSCOPE_BANDWIDTH_64HZ = 6
  • BrickletIMUV3->GYROSCOPE_BANDWIDTH_32HZ = 7

For $accelerometer_range:

  • BrickletIMUV3->ACCELEROMETER_RANGE_2G = 0
  • BrickletIMUV3->ACCELEROMETER_RANGE_4G = 1
  • BrickletIMUV3->ACCELEROMETER_RANGE_8G = 2
  • BrickletIMUV3->ACCELEROMETER_RANGE_16G = 3

For $accelerometer_bandwidth:

  • BrickletIMUV3->ACCELEROMETER_BANDWIDTH_7_81HZ = 0
  • BrickletIMUV3->ACCELEROMETER_BANDWIDTH_15_63HZ = 1
  • BrickletIMUV3->ACCELEROMETER_BANDWIDTH_31_25HZ = 2
  • BrickletIMUV3->ACCELEROMETER_BANDWIDTH_62_5HZ = 3
  • BrickletIMUV3->ACCELEROMETER_BANDWIDTH_125HZ = 4
  • BrickletIMUV3->ACCELEROMETER_BANDWIDTH_250HZ = 5
  • BrickletIMUV3->ACCELEROMETER_BANDWIDTH_500HZ = 6
  • BrickletIMUV3->ACCELEROMETER_BANDWIDTH_1000HZ = 7
BrickletIMUV3->set_sensor_fusion_mode($mode)
Parameters:
  • $mode – Type: int, Range: See constants, Default: 1
Returns:
  • undef

If the fusion mode is turned off, the functions get_acceleration(), get_magnetic_field() and get_angular_velocity() return uncalibrated and uncompensated sensor data. All other sensor data getters return no data.

Since firmware version 2.0.6 you can also use a fusion mode without magnetometer. In this mode the calculated orientation is relative (with magnetometer it is absolute with respect to the earth). However, the calculation can't be influenced by spurious magnetic fields.

Since firmware version 2.0.13 you can also use a fusion mode without fast magnetometer calibration. This mode is the same as the normal fusion mode, but the fast magnetometer calibration is turned off. So to find the orientation the first time will likely take longer, but small magnetic influences might not affect the automatic calibration as much.

The following constants are available for this function:

For $mode:

  • BrickletIMUV3->SENSOR_FUSION_OFF = 0
  • BrickletIMUV3->SENSOR_FUSION_ON = 1
  • BrickletIMUV3->SENSOR_FUSION_ON_WITHOUT_MAGNETOMETER = 2
  • BrickletIMUV3->SENSOR_FUSION_ON_WITHOUT_FAST_MAGNETOMETER_CALIBRATION = 3
BrickletIMUV3->get_sensor_fusion_mode()
Returns:
  • $mode – Type: int, Range: See constants, Default: 1

Returns the sensor fusion mode as set by set_sensor_fusion_mode().

The following constants are available for this function:

For $mode:

  • BrickletIMUV3->SENSOR_FUSION_OFF = 0
  • BrickletIMUV3->SENSOR_FUSION_ON = 1
  • BrickletIMUV3->SENSOR_FUSION_ON_WITHOUT_MAGNETOMETER = 2
  • BrickletIMUV3->SENSOR_FUSION_ON_WITHOUT_FAST_MAGNETOMETER_CALIBRATION = 3
BrickletIMUV3->get_spitfp_error_count()
Return Array:
  • 0: $error_count_ack_checksum – Type: int, Range: [0 to 232 - 1]
  • 1: $error_count_message_checksum – Type: int, Range: [0 to 232 - 1]
  • 2: $error_count_frame – Type: int, Range: [0 to 232 - 1]
  • 3: $error_count_overflow – Type: int, Range: [0 to 232 - 1]

Returns the error count for the communication between Brick and Bricklet.

The errors are divided into

  • ACK checksum errors,
  • message checksum errors,
  • framing errors and
  • overflow errors.

The errors counts are for errors that occur on the Bricklet side. All Bricks have a similar function that returns the errors on the Brick side.

BrickletIMUV3->set_status_led_config($config)
Parameters:
  • $config – Type: int, Range: See constants, Default: 3
Returns:
  • undef

Sets the status LED configuration. By default the LED shows communication traffic between Brick and Bricklet, it flickers once for every 10 received data packets.

You can also turn the LED permanently on/off or show a heartbeat.

If the Bricklet is in bootloader mode, the LED is will show heartbeat by default.

The following constants are available for this function:

For $config:

  • BrickletIMUV3->STATUS_LED_CONFIG_OFF = 0
  • BrickletIMUV3->STATUS_LED_CONFIG_ON = 1
  • BrickletIMUV3->STATUS_LED_CONFIG_SHOW_HEARTBEAT = 2
  • BrickletIMUV3->STATUS_LED_CONFIG_SHOW_STATUS = 3
BrickletIMUV3->get_status_led_config()
Returns:
  • $config – Type: int, Range: See constants, Default: 3

Returns the configuration as set by set_status_led_config()

The following constants are available for this function:

For $config:

  • BrickletIMUV3->STATUS_LED_CONFIG_OFF = 0
  • BrickletIMUV3->STATUS_LED_CONFIG_ON = 1
  • BrickletIMUV3->STATUS_LED_CONFIG_SHOW_HEARTBEAT = 2
  • BrickletIMUV3->STATUS_LED_CONFIG_SHOW_STATUS = 3
BrickletIMUV3->get_chip_temperature()
Returns:
  • $temperature – Type: int, Unit: 1 °C, Range: [-215 to 215 - 1]

Returns the temperature as measured inside the microcontroller. The value returned is not the ambient temperature!

The temperature is only proportional to the real temperature and it has bad accuracy. Practically it is only useful as an indicator for temperature changes.

BrickletIMUV3->reset()
Returns:
  • undef

Calling this function will reset the Bricklet. All configurations will be lost.

After a reset you have to create new device objects, calling functions on the existing ones will result in undefined behavior!

BrickletIMUV3->get_identity()
Return Array:
  • 0: $uid – Type: string, Length: up to 8
  • 1: $connected_uid – Type: string, Length: up to 8
  • 2: $position – Type: char, Range: ['a' to 'h', 'z']
  • 3: \@hardware_version – Type: [int, ...], Length: 3
    • 0: $major – Type: int, Range: [0 to 255]
    • 1: $minor – Type: int, Range: [0 to 255]
    • 2: $revision – Type: int, Range: [0 to 255]
  • 4: \@firmware_version – Type: [int, ...], Length: 3
    • 0: $major – Type: int, Range: [0 to 255]
    • 1: $minor – Type: int, Range: [0 to 255]
    • 2: $revision – Type: int, Range: [0 to 255]
  • 5: $device_identifier – Type: int, Range: [0 to 216 - 1]

Returns the UID, the UID where the Bricklet is connected to, the position, the hardware and firmware version as well as the device identifier.

The position can be 'a', 'b', 'c', 'd', 'e', 'f', 'g' or 'h' (Bricklet Port). A Bricklet connected to an Isolator Bricklet is always at position 'z'.

The device identifier numbers can be found here. There is also a constant for the device identifier of this Bricklet.

Callback Configuration Functions

BrickletIMUV3->register_callback($callback_id, $function)
Parameters:
  • $callback_id – Type: int
  • $function – Type: string
Returns:
  • undef

Registers the given $function name with the given $callback_id.

The available callback IDs with corresponding function signatures are listed below.

BrickletIMUV3->set_acceleration_callback_configuration($period, $value_has_to_change)
Parameters:
  • $period – Type: int, Unit: 1 ms, Range: [0 to 232 - 1], Default: 0
  • $value_has_to_change – Type: bool, Default: 0
Returns:
  • undef

The period is the period with which the CALLBACK_ACCELERATION callback is triggered periodically. A value of 0 turns the callback off.

If the value has to change-parameter is set to true, the callback is only triggered after the value has changed. If the value didn't change within the period, the callback is triggered immediately on change.

If it is set to false, the callback is continuously triggered with the period, independent of the value.

BrickletIMUV3->get_acceleration_callback_configuration()
Return Array:
  • 0: $period – Type: int, Unit: 1 ms, Range: [0 to 232 - 1], Default: 0
  • 1: $value_has_to_change – Type: bool, Default: 0

Returns the callback configuration as set by set_acceleration_callback_configuration().

BrickletIMUV3->set_magnetic_field_callback_configuration($period, $value_has_to_change)
Parameters:
  • $period – Type: int, Unit: 1 ms, Range: [0 to 232 - 1], Default: 0
  • $value_has_to_change – Type: bool, Default: 0
Returns:
  • undef

The period is the period with which the CALLBACK_MAGNETIC_FIELD callback is triggered periodically. A value of 0 turns the callback off.

If the value has to change-parameter is set to true, the callback is only triggered after the value has changed. If the value didn't change within the period, the callback is triggered immediately on change.

If it is set to false, the callback is continuously triggered with the period, independent of the value.

BrickletIMUV3->get_magnetic_field_callback_configuration()
Return Array:
  • 0: $period – Type: int, Unit: 1 ms, Range: [0 to 232 - 1], Default: 0
  • 1: $value_has_to_change – Type: bool, Default: 0

Returns the callback configuration as set by set_magnetic_field_callback_configuration().

BrickletIMUV3->set_angular_velocity_callback_configuration($period, $value_has_to_change)
Parameters:
  • $period – Type: int, Unit: 1 ms, Range: [0 to 232 - 1], Default: 0
  • $value_has_to_change – Type: bool, Default: 0
Returns:
  • undef

The period is the period with which the CALLBACK_ANGULAR_VELOCITY callback is triggered periodically. A value of 0 turns the callback off.

If the value has to change-parameter is set to true, the callback is only triggered after the value has changed. If the value didn't change within the period, the callback is triggered immediately on change.

If it is set to false, the callback is continuously triggered with the period, independent of the value.

BrickletIMUV3->get_angular_velocity_callback_configuration()
Return Array:
  • 0: $period – Type: int, Unit: 1 ms, Range: [0 to 232 - 1], Default: 0
  • 1: $value_has_to_change – Type: bool, Default: 0

Returns the callback configuration as set by set_angular_velocity_callback_configuration().

BrickletIMUV3->set_temperature_callback_configuration($period, $value_has_to_change)
Parameters:
  • $period – Type: int, Unit: 1 ms, Range: [0 to 232 - 1], Default: 0
  • $value_has_to_change – Type: bool, Default: 0
Returns:
  • undef

The period is the period with which the CALLBACK_TEMPERATURE callback is triggered periodically. A value of 0 turns the callback off.

If the value has to change-parameter is set to true, the callback is only triggered after the value has changed. If the value didn't change within the period, the callback is triggered immediately on change.

If it is set to false, the callback is continuously triggered with the period, independent of the value.

BrickletIMUV3->get_temperature_callback_configuration()
Return Array:
  • 0: $period – Type: int, Unit: 1 ms, Range: [0 to 232 - 1], Default: 0
  • 1: $value_has_to_change – Type: bool, Default: 0

Returns the callback configuration as set by set_temperature_callback_configuration().

BrickletIMUV3->set_orientation_callback_configuration($period, $value_has_to_change)
Parameters:
  • $period – Type: int, Unit: 1 ms, Range: [0 to 232 - 1], Default: 0
  • $value_has_to_change – Type: bool, Default: 0
Returns:
  • undef

The period is the period with which the CALLBACK_ORIENTATION callback is triggered periodically. A value of 0 turns the callback off.

If the value has to change-parameter is set to true, the callback is only triggered after the value has changed. If the value didn't change within the period, the callback is triggered immediately on change.

If it is set to false, the callback is continuously triggered with the period, independent of the value.

BrickletIMUV3->get_orientation_callback_configuration()
Return Array:
  • 0: $period – Type: int, Unit: 1 ms, Range: [0 to 232 - 1], Default: 0
  • 1: $value_has_to_change – Type: bool, Default: 0

Returns the callback configuration as set by set_orientation_callback_configuration().

BrickletIMUV3->set_linear_acceleration_callback_configuration($period, $value_has_to_change)
Parameters:
  • $period – Type: int, Unit: 1 ms, Range: [0 to 232 - 1], Default: 0
  • $value_has_to_change – Type: bool, Default: 0
Returns:
  • undef

The period is the period with which the CALLBACK_LINEAR_ACCELERATION callback is triggered periodically. A value of 0 turns the callback off.

If the value has to change-parameter is set to true, the callback is only triggered after the value has changed. If the value didn't change within the period, the callback is triggered immediately on change.

If it is set to false, the callback is continuously triggered with the period, independent of the value.

BrickletIMUV3->get_linear_acceleration_callback_configuration()
Return Array:
  • 0: $period – Type: int, Unit: 1 ms, Range: [0 to 232 - 1], Default: 0
  • 1: $value_has_to_change – Type: bool, Default: 0

Returns the callback configuration as set by set_linear_acceleration_callback_configuration().

BrickletIMUV3->set_gravity_vector_callback_configuration($period, $value_has_to_change)
Parameters:
  • $period – Type: int, Unit: 1 ms, Range: [0 to 232 - 1], Default: 0
  • $value_has_to_change – Type: bool, Default: 0
Returns:
  • undef

The period is the period with which the CALLBACK_GRAVITY_VECTOR callback is triggered periodically. A value of 0 turns the callback off.

If the value has to change-parameter is set to true, the callback is only triggered after the value has changed. If the value didn't change within the period, the callback is triggered immediately on change.

If it is set to false, the callback is continuously triggered with the period, independent of the value.

BrickletIMUV3->get_gravity_vector_callback_configuration()
Return Array:
  • 0: $period – Type: int, Unit: 1 ms, Range: [0 to 232 - 1], Default: 0
  • 1: $value_has_to_change – Type: bool, Default: 0

Returns the callback configuration as set by set_gravity_vector_callback_configuration().

BrickletIMUV3->set_quaternion_callback_configuration($period, $value_has_to_change)
Parameters:
  • $period – Type: int, Unit: 1 ms, Range: [0 to 232 - 1], Default: 0
  • $value_has_to_change – Type: bool, Default: 0
Returns:
  • undef

The period is the period with which the CALLBACK_QUATERNION callback is triggered periodically. A value of 0 turns the callback off.

If the value has to change-parameter is set to true, the callback is only triggered after the value has changed. If the value didn't change within the period, the callback is triggered immediately on change.

If it is set to false, the callback is continuously triggered with the period, independent of the value.

BrickletIMUV3->get_quaternion_callback_configuration()
Return Array:
  • 0: $period – Type: int, Unit: 1 ms, Range: [0 to 232 - 1], Default: 0
  • 1: $value_has_to_change – Type: bool, Default: 0

Returns the callback configuration as set by set_quaternion_callback_configuration().

BrickletIMUV3->set_all_data_callback_configuration($period, $value_has_to_change)
Parameters:
  • $period – Type: int, Unit: 1 ms, Range: [0 to 232 - 1], Default: 0
  • $value_has_to_change – Type: bool, Default: 0
Returns:
  • undef

The period is the period with which the CALLBACK_ALL_DATA callback is triggered periodically. A value of 0 turns the callback off.

If the value has to change-parameter is set to true, the callback is only triggered after the value has changed. If the value didn't change within the period, the callback is triggered immediately on change.

If it is set to false, the callback is continuously triggered with the period, independent of the value.

BrickletIMUV3->get_all_data_callback_configuration()
Return Array:
  • 0: $period – Type: int, Unit: 1 ms, Range: [0 to 232 - 1], Default: 0
  • 1: $value_has_to_change – Type: bool, Default: 0

Returns the callback configuration as set by set_all_data_callback_configuration().

Callbacks

Callbacks can be registered to receive time critical or recurring data from the device. The registration is done with the register_callback() function of the device object. The first parameter is the callback ID and the second parameter the callback function name:

sub my_callback
{
    print "@_[0]";
}

$imu_v3->register_callback(BrickletIMUV3->CALLBACK_EXAMPLE, 'my_callback')

The callback function will be called from an internal thread of the IP Connection. In contrast to many other programming languages, variables are not automatically shared between threads in Perl. If you want to share a global variable between a callback function and the rest for your program it has to be marked as :shared. See the documentation of the threads::shared Perl module for more details.

The available constants with inherent number and type of parameters are described below.

Note

Using callbacks for recurring events is always preferred compared to using getters. It will use less USB bandwidth and the latency will be a lot better, since there is no round trip time.

BrickletIMUV3->CALLBACK_ACCELERATION
Callback Parameters:
  • $x – Type: int, Unit: 1 cm/s², Range: ?
  • $y – Type: int, Unit: 1 cm/s², Range: ?
  • $z – Type: int, Unit: 1 cm/s², Range: ?

This callback is triggered periodically with the period that is set by set_acceleration_callback_configuration(). The parameters are the acceleration for the x, y and z axis.

BrickletIMUV3->CALLBACK_MAGNETIC_FIELD
Callback Parameters:
  • $x – Type: int, Unit: 1/16 µT, Range: [-20800 to 20800]
  • $y – Type: int, Unit: 1/16 µT, Range: [-20800 to 20800]
  • $z – Type: int, Unit: 1/16 µT, Range: [-40000 to 40000]

This callback is triggered periodically with the period that is set by set_magnetic_field_callback_configuration(). The parameters are the magnetic field for the x, y and z axis.

BrickletIMUV3->CALLBACK_ANGULAR_VELOCITY
Callback Parameters:
  • $x – Type: int, Unit: 1/16 °/s, Range: ?
  • $y – Type: int, Unit: 1/16 °/s, Range: ?
  • $z – Type: int, Unit: 1/16 °/s, Range: ?

This callback is triggered periodically with the period that is set by set_angular_velocity_callback_configuration(). The parameters are the angular velocity for the x, y and z axis.

BrickletIMUV3->CALLBACK_TEMPERATURE
Callback Parameters:
  • $temperature – Type: int, Unit: 1 °C, Range: [-128 to 127]

This callback is triggered periodically with the period that is set by set_temperature_callback_configuration(). The parameter is the temperature.

BrickletIMUV3->CALLBACK_LINEAR_ACCELERATION
Callback Parameters:
  • $x – Type: int, Unit: 1 cm/s², Range: ?
  • $y – Type: int, Unit: 1 cm/s², Range: ?
  • $z – Type: int, Unit: 1 cm/s², Range: ?

This callback is triggered periodically with the period that is set by set_linear_acceleration_callback_configuration(). The parameters are the linear acceleration for the x, y and z axis.

BrickletIMUV3->CALLBACK_GRAVITY_VECTOR
Callback Parameters:
  • $x – Type: int, Unit: 1 cm/s², Range: [-981 to 981]
  • $y – Type: int, Unit: 1 cm/s², Range: [-981 to 981]
  • $z – Type: int, Unit: 1 cm/s², Range: [-981 to 981]

This callback is triggered periodically with the period that is set by set_gravity_vector_callback_configuration(). The parameters gravity vector for the x, y and z axis.

BrickletIMUV3->CALLBACK_ORIENTATION
Callback Parameters:
  • $heading – Type: int, Unit: 1/16 °, Range: [0 to 5760]
  • $roll – Type: int, Unit: 1/16 °, Range: [-1440 to 1440]
  • $pitch – Type: int, Unit: 1/16 °, Range: [-2880 to 2880]

This callback is triggered periodically with the period that is set by set_orientation_callback_configuration(). The parameters are the orientation (heading (yaw), roll, pitch) of the IMU Brick in Euler angles. See get_orientation() for details.

BrickletIMUV3->CALLBACK_QUATERNION
Callback Parameters:
  • $w – Type: int, Unit: 1/16383, Range: [-214 + 1 to 214 - 1]
  • $x – Type: int, Unit: 1/16383, Range: [-214 + 1 to 214 - 1]
  • $y – Type: int, Unit: 1/16383, Range: [-214 + 1 to 214 - 1]
  • $z – Type: int, Unit: 1/16383, Range: [-214 + 1 to 214 - 1]

This callback is triggered periodically with the period that is set by set_quaternion_callback_configuration(). The parameters are the orientation (w, x, y, z) of the IMU Brick in quaternions. See get_quaternion() for details.

BrickletIMUV3->CALLBACK_ALL_DATA
Callback Parameters:
  • \@acceleration – Type: [int, ...], Length: 3
    • 0: $x – Type: int, Unit: 1 cm/s², Range: ?
    • 1: $y – Type: int, Unit: 1 cm/s², Range: ?
    • 2: $z – Type: int, Unit: 1 cm/s², Range: ?
  • \@magnetic_field – Type: [int, ...], Length: 3
    • 0: $x – Type: int, Unit: 1/16 µT, Range: [-20800 to 20800]
    • 1: $y – Type: int, Unit: 1/16 µT, Range: [-20800 to 20800]
    • 2: $z – Type: int, Unit: 1/16 µT, Range: [-40000 to 40000]
  • \@angular_velocity – Type: [int, ...], Length: 3
    • 0: $x – Type: int, Unit: 1/16 °/s, Range: ?
    • 1: $y – Type: int, Unit: 1/16 °/s, Range: ?
    • 2: $z – Type: int, Unit: 1/16 °/s, Range: ?
  • \@euler_angle – Type: [int, ...], Length: 3
    • 0: $heading – Type: int, Unit: 1/16 °, Range: [0 to 5760]
    • 1: $roll – Type: int, Unit: 1/16 °, Range: [-1440 to 1440]
    • 2: $pitch – Type: int, Unit: 1/16 °, Range: [-2880 to 2880]
  • \@quaternion – Type: [int, ...], Length: 4
    • 0: $w – Type: int, Unit: 1/16383, Range: [-214 + 1 to 214 - 1]
    • 1: $x – Type: int, Unit: 1/16383, Range: [-214 + 1 to 214 - 1]
    • 2: $y – Type: int, Unit: 1/16383, Range: [-214 + 1 to 214 - 1]
    • 3: $z – Type: int, Unit: 1/16383, Range: [-214 + 1 to 214 - 1]
  • \@linear_acceleration – Type: [int, ...], Length: 3
    • 0: $x – Type: int, Unit: 1 cm/s², Range: ?
    • 1: $y – Type: int, Unit: 1 cm/s², Range: ?
    • 2: $z – Type: int, Unit: 1 cm/s², Range: ?
  • \@gravity_vector – Type: [int, ...], Length: 3
    • 0: $x – Type: int, Unit: 1 cm/s², Range: ?
    • 1: $y – Type: int, Unit: 1 cm/s², Range: ?
    • 2: $z – Type: int, Unit: 1 cm/s², Range: ?
  • $temperature – Type: int, Unit: 1 °C, Range: [-128 to 127]
  • $calibration_status – Type: int, Range: [0 to 255]

This callback is triggered periodically with the period that is set by set_all_data_callback_configuration(). The parameters are as for get_all_data().

Virtual Functions

Virtual functions don't communicate with the device itself, but operate only on the API bindings device object. They can be called without the corresponding IP Connection object being connected.

BrickletIMUV3->get_api_version()
Return Array:
  • 0: \@api_version – Type: [int, ...], Length: 3
    • 0: $major – Type: int, Range: [0 to 255]
    • 1: $minor – Type: int, Range: [0 to 255]
    • 2: $revision – Type: int, Range: [0 to 255]

Returns the version of the API definition implemented by this API bindings. This is neither the release version of this API bindings nor does it tell you anything about the represented Brick or Bricklet.

BrickletIMUV3->get_response_expected($function_id)
Parameters:
  • $function_id – Type: int, Range: See constants
Returns:
  • $response_expected – Type: bool

Returns the response expected flag for the function specified by the function ID parameter. It is true if the function is expected to send a response, false otherwise.

For getter functions this is enabled by default and cannot be disabled, because those functions will always send a response. For callback configuration functions it is enabled by default too, but can be disabled by set_response_expected(). For setter functions it is disabled by default and can be enabled.

Enabling the response expected flag for a setter function allows to detect timeouts and other error conditions calls of this setter as well. The device will then send a response for this purpose. If this flag is disabled for a setter function then no response is sent and errors are silently ignored, because they cannot be detected.

The following constants are available for this function:

For $function_id:

  • BrickletIMUV3->FUNCTION_SET_SENSOR_CONFIGURATION = 11
  • BrickletIMUV3->FUNCTION_SET_SENSOR_FUSION_MODE = 13
  • BrickletIMUV3->FUNCTION_SET_ACCELERATION_CALLBACK_CONFIGURATION = 15
  • BrickletIMUV3->FUNCTION_SET_MAGNETIC_FIELD_CALLBACK_CONFIGURATION = 17
  • BrickletIMUV3->FUNCTION_SET_ANGULAR_VELOCITY_CALLBACK_CONFIGURATION = 19
  • BrickletIMUV3->FUNCTION_SET_TEMPERATURE_CALLBACK_CONFIGURATION = 21
  • BrickletIMUV3->FUNCTION_SET_ORIENTATION_CALLBACK_CONFIGURATION = 23
  • BrickletIMUV3->FUNCTION_SET_LINEAR_ACCELERATION_CALLBACK_CONFIGURATION = 25
  • BrickletIMUV3->FUNCTION_SET_GRAVITY_VECTOR_CALLBACK_CONFIGURATION = 27
  • BrickletIMUV3->FUNCTION_SET_QUATERNION_CALLBACK_CONFIGURATION = 29
  • BrickletIMUV3->FUNCTION_SET_ALL_DATA_CALLBACK_CONFIGURATION = 31
  • BrickletIMUV3->FUNCTION_SET_WRITE_FIRMWARE_POINTER = 237
  • BrickletIMUV3->FUNCTION_SET_STATUS_LED_CONFIG = 239
  • BrickletIMUV3->FUNCTION_RESET = 243
  • BrickletIMUV3->FUNCTION_WRITE_UID = 248
BrickletIMUV3->set_response_expected($function_id, $response_expected)
Parameters:
  • $function_id – Type: int, Range: See constants
  • $response_expected – Type: bool
Returns:
  • undef

Changes the response expected flag of the function specified by the function ID parameter. This flag can only be changed for setter (default value: false) and callback configuration functions (default value: true). For getter functions it is always enabled.

Enabling the response expected flag for a setter function allows to detect timeouts and other error conditions calls of this setter as well. The device will then send a response for this purpose. If this flag is disabled for a setter function then no response is sent and errors are silently ignored, because they cannot be detected.

The following constants are available for this function:

For $function_id:

  • BrickletIMUV3->FUNCTION_SET_SENSOR_CONFIGURATION = 11
  • BrickletIMUV3->FUNCTION_SET_SENSOR_FUSION_MODE = 13
  • BrickletIMUV3->FUNCTION_SET_ACCELERATION_CALLBACK_CONFIGURATION = 15
  • BrickletIMUV3->FUNCTION_SET_MAGNETIC_FIELD_CALLBACK_CONFIGURATION = 17
  • BrickletIMUV3->FUNCTION_SET_ANGULAR_VELOCITY_CALLBACK_CONFIGURATION = 19
  • BrickletIMUV3->FUNCTION_SET_TEMPERATURE_CALLBACK_CONFIGURATION = 21
  • BrickletIMUV3->FUNCTION_SET_ORIENTATION_CALLBACK_CONFIGURATION = 23
  • BrickletIMUV3->FUNCTION_SET_LINEAR_ACCELERATION_CALLBACK_CONFIGURATION = 25
  • BrickletIMUV3->FUNCTION_SET_GRAVITY_VECTOR_CALLBACK_CONFIGURATION = 27
  • BrickletIMUV3->FUNCTION_SET_QUATERNION_CALLBACK_CONFIGURATION = 29
  • BrickletIMUV3->FUNCTION_SET_ALL_DATA_CALLBACK_CONFIGURATION = 31
  • BrickletIMUV3->FUNCTION_SET_WRITE_FIRMWARE_POINTER = 237
  • BrickletIMUV3->FUNCTION_SET_STATUS_LED_CONFIG = 239
  • BrickletIMUV3->FUNCTION_RESET = 243
  • BrickletIMUV3->FUNCTION_WRITE_UID = 248
BrickletIMUV3->set_response_expected_all($response_expected)
Parameters:
  • $response_expected – Type: bool
Returns:
  • undef

Changes the response expected flag for all setter and callback configuration functions of this device at once.

Internal Functions

Internal functions are used for maintenance tasks such as flashing a new firmware of changing the UID of a Bricklet. These task should be performed using Brick Viewer instead of using the internal functions directly.

BrickletIMUV3->set_bootloader_mode($mode)
Parameters:
  • $mode – Type: int, Range: See constants
Returns:
  • $status – Type: int, Range: See constants

Sets the bootloader mode and returns the status after the requested mode change was instigated.

You can change from bootloader mode to firmware mode and vice versa. A change from bootloader mode to firmware mode will only take place if the entry function, device identifier and CRC are present and correct.

This function is used by Brick Viewer during flashing. It should not be necessary to call it in a normal user program.

The following constants are available for this function:

For $mode:

  • BrickletIMUV3->BOOTLOADER_MODE_BOOTLOADER = 0
  • BrickletIMUV3->BOOTLOADER_MODE_FIRMWARE = 1
  • BrickletIMUV3->BOOTLOADER_MODE_BOOTLOADER_WAIT_FOR_REBOOT = 2
  • BrickletIMUV3->BOOTLOADER_MODE_FIRMWARE_WAIT_FOR_REBOOT = 3
  • BrickletIMUV3->BOOTLOADER_MODE_FIRMWARE_WAIT_FOR_ERASE_AND_REBOOT = 4

For $status:

  • BrickletIMUV3->BOOTLOADER_STATUS_OK = 0
  • BrickletIMUV3->BOOTLOADER_STATUS_INVALID_MODE = 1
  • BrickletIMUV3->BOOTLOADER_STATUS_NO_CHANGE = 2
  • BrickletIMUV3->BOOTLOADER_STATUS_ENTRY_FUNCTION_NOT_PRESENT = 3
  • BrickletIMUV3->BOOTLOADER_STATUS_DEVICE_IDENTIFIER_INCORRECT = 4
  • BrickletIMUV3->BOOTLOADER_STATUS_CRC_MISMATCH = 5
BrickletIMUV3->get_bootloader_mode()
Returns:
  • $mode – Type: int, Range: See constants

Returns the current bootloader mode, see set_bootloader_mode().

The following constants are available for this function:

For $mode:

  • BrickletIMUV3->BOOTLOADER_MODE_BOOTLOADER = 0
  • BrickletIMUV3->BOOTLOADER_MODE_FIRMWARE = 1
  • BrickletIMUV3->BOOTLOADER_MODE_BOOTLOADER_WAIT_FOR_REBOOT = 2
  • BrickletIMUV3->BOOTLOADER_MODE_FIRMWARE_WAIT_FOR_REBOOT = 3
  • BrickletIMUV3->BOOTLOADER_MODE_FIRMWARE_WAIT_FOR_ERASE_AND_REBOOT = 4
BrickletIMUV3->set_write_firmware_pointer($pointer)
Parameters:
  • $pointer – Type: int, Unit: 1 B, Range: [0 to 232 - 1]
Returns:
  • undef

Sets the firmware pointer for write_firmware(). The pointer has to be increased by chunks of size 64. The data is written to flash every 4 chunks (which equals to one page of size 256).

This function is used by Brick Viewer during flashing. It should not be necessary to call it in a normal user program.

BrickletIMUV3->write_firmware(\@data)
Parameters:
  • \@data – Type: [int, ...], Length: 64, Range: [0 to 255]
Returns:
  • $status – Type: int, Range: [0 to 255]

Writes 64 Bytes of firmware at the position as written by set_write_firmware_pointer() before. The firmware is written to flash every 4 chunks.

You can only write firmware in bootloader mode.

This function is used by Brick Viewer during flashing. It should not be necessary to call it in a normal user program.

BrickletIMUV3->write_uid($uid)
Parameters:
  • $uid – Type: int, Range: [0 to 232 - 1]
Returns:
  • undef

Writes a new UID into flash. If you want to set a new UID you have to decode the Base58 encoded UID string into an integer first.

We recommend that you use Brick Viewer to change the UID.

BrickletIMUV3->read_uid()
Returns:
  • $uid – Type: int, Range: [0 to 232 - 1]

Returns the current UID as an integer. Encode as Base58 to get the usual string version.

Constants

BrickletIMUV3->DEVICE_IDENTIFIER

This constant is used to identify a IMU Bricklet 3.0.

The get_identity() function and the IPConnection->CALLBACK_ENUMERATE callback of the IP Connection have a device_identifier parameter to specify the Brick's or Bricklet's type.

BrickletIMUV3->DEVICE_DISPLAY_NAME

This constant represents the human readable name of a IMU Bricklet 3.0.