Delphi/Lazarus - NFC Bricklet

This is the description of the Delphi/Lazarus API bindings for the NFC Bricklet. General information and technical specifications for the NFC Bricklet are summarized in its hardware description.

An installation guide for the Delphi/Lazarus API bindings is part of their general description.

Examples

The example code below is Public Domain (CC0 1.0).

Scan For Tags

Download (ExampleScanForTags.pas)

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
program ExampleScanForTags;

{$ifdef MSWINDOWS}{$apptype CONSOLE}{$endif}
{$ifdef FPC}{$mode OBJFPC}{$H+}{$endif}

uses
  SysUtils, IPConnection, BrickletNFC;

type
  TExample = class
  private
    ipcon: TIPConnection;
    nfc: TBrickletNFC;
  public
    procedure ReaderStateChangedCB(sender: TBrickletNFC; const state: byte;
                                   const idle: boolean);
    procedure Execute;
  end;

const
  HOST = 'localhost';
  PORT = 4223;
  UID = 'XYZ'; { Change XYZ to the UID of your NFC Bricklet }

var
  e: TExample;

{ Callback procedure for reader state changed callback }
procedure TExample.ReaderStateChangedCB(sender: TBrickletNFC; const state: byte;
                                        const idle: boolean);
var i: byte; var tagType: byte; var tagInfo: string; var tagID: TArrayOfUInt8;
begin
  if (state = BRICKLET_NFC_READER_STATE_REQUEST_TAG_ID_READY) then begin
    sender.ReaderGetTagID(tagType, tagID);

    tagInfo := 'Found tag of type ' + IntToStr(tagType) + ' with ID [';

    for i := 0 to (Length(tagID) - 1) do begin
      tagInfo := tagInfo + '0x' + IntToHex(tagID[i], 2);

      if i < Length(tagID) - 1 then begin
        tagInfo := tagInfo + ' ';
      end;
    end;

    tagInfo := tagInfo + ']';

    WriteLn(tagInfo);
  end;
  if (idle) then begin
    sender.ReaderRequestTagID;
  end;
end;

procedure TExample.Execute;
begin
  { Create IP connection }
  ipcon := TIPConnection.Create;

  { Create device object }
  nfc := TBrickletNFC.Create(UID, ipcon);

  { Connect to brickd }
  ipcon.Connect(HOST, PORT);
  { Don't use device before ipcon is connected }

  { Register reader state changed callback to procedure ReaderStateChangedCB }
  nfc.OnReaderStateChanged := {$ifdef FPC}@{$endif}ReaderStateChangedCB;

  { Enable reader mode }
  nfc.SetMode(BRICKLET_NFC_MODE_READER);

  WriteLn('Press key to exit');
  ReadLn;
  ipcon.Destroy; { Calls ipcon.Disconnect internally }
end;

begin
  e := TExample.Create;
  e.Execute;
  e.Destroy;
end.

Emulate NDEF

Download (ExampleEmulateNDEF.pas)

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
program ExampleEmulateNDEF;

{$ifdef MSWINDOWS}{$apptype CONSOLE}{$endif}
{$ifdef FPC}{$mode OBJFPC}{$H+}{$endif}

uses
  SysUtils, IPConnection, BrickletNFC;

type
  TExample = class
  private
    ipcon: TIPConnection;
    nfc: TBrickletNFC;
  public
    procedure CardemuStateChangedCB(sender: TBrickletNFC; const state: byte;
                                    const idle: boolean);
    procedure Execute;
  end;

const
  HOST = 'localhost';
  PORT = 4223;
  UID = 'XYZ'; { Change XYZ to the UID of your NFC Bricklet }
  NDEF_URI = 'www.tinkerforge.com';

var
  e: TExample;

{ Callback procedure for cardemu state changed callback }
procedure TExample.CardemuStateChangedCB(sender: TBrickletNFC; const state: byte;
                                         const idle: boolean);
  var i: byte;
  var ndefRecordURI: Array of Byte;
begin
  if state = BRICKLET_NFC_CARDEMU_STATE_IDLE then begin
    { Only short records are supported } 
    SetLength(ndefRecordURI, Length(NDEF_URI) + 5);

    ndefRecordURI[0] := $D1;                  { MB/ME/CF/SR=1/IL/TNF }
    ndefRecordURI[1] := $01;                  { TYPE LENGTH }
    ndefRecordURI[2] := Length(NDEF_URI) + 1; { Length }
    ndefRecordURI[3] := ord('U');             { Type }
    ndefRecordURI[4] := $04;                  { Status }

    for i := 0 to (Length(NDEF_URI) + 1) do begin
      ndefRecordURI[5 + i] := ord(NDEF_URI[i + 1]);
    end;

    nfc.CardemuWriteNDEF(ndefRecordURI);
    nfc.CardemuStartDiscovery;
  end
  else if state = BRICKLET_NFC_CARDEMU_STATE_DISCOVER_READY then begin
    sender.CardemuStartTransfer(BRICKLET_NFC_CARDEMU_TRANSFER_WRITE);
  end
  else if state = BRICKLET_NFC_CARDEMU_STATE_DISCOVER_ERROR then begin
    WriteLn('Discover error');
  end
  else if state = BRICKLET_NFC_CARDEMU_STATE_TRANSFER_NDEF_ERROR then begin
    WriteLn('Transfer NDEF error');
  end;
end;

procedure TExample.Execute;
begin
  { Create IP connection }
  ipcon := TIPConnection.Create;

  { Create device object }
  nfc := TBrickletNFC.Create(UID, ipcon);

  { Connect to brickd }
  ipcon.Connect(HOST, PORT);
  { Don't use device before ipcon is connected }

  { Register cardemu state changed callback to procedure CardemuStateChangedCB }
  nfc.OnCardemuStateChanged := {$ifdef FPC}@{$endif}CardemuStateChangedCB;

  { Enable cardemu mode }
  nfc.SetMode(BRICKLET_NFC_MODE_CARDEMU);

  WriteLn('Press key to exit');
  ReadLn;
  ipcon.Destroy; { Calls ipcon.Disconnect internally }
end;

begin
  e := TExample.Create;
  e.Execute;
  e.Destroy;
end.

Write Read Type 2

Download (ExampleWriteReadType2.pas)

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
program ExampleWriteReadType2;

{$ifdef MSWINDOWS}{$apptype CONSOLE}{$endif}
{$ifdef FPC}{$mode OBJFPC}{$H+}{$endif}

uses
  SysUtils, IPConnection, BrickletNFC;

type
  TExample = class
  private
    ipcon: TIPConnection;
    nfc: TBrickletNFC;
  public
    procedure ReaderStateChangedCB(sender: TBrickletNFC; const state: byte;
                                   const idle: boolean);
    procedure Execute;
  end;

const
  HOST = 'localhost';
  PORT = 4223;
  UID = 'XYZ'; { Change XYZ to the UID of your NFC Bricklet }

var
  e: TExample;

{ Callback procedure for reader state changed callback }
procedure TExample.ReaderStateChangedCB(sender: TBrickletNFC; const state: byte;
                                        const idle: boolean);
  var tagType: byte;
  var page: TArrayOfUInt8;
  var tagID: TArrayOfUInt8;
begin
  if state = BRICKLET_NFC_READER_STATE_IDLE then begin
    sender.ReaderRequestTagID;
  end
  else if state = BRICKLET_NFC_READER_STATE_REQUEST_TAG_ID_READY then begin
    sender.ReaderGetTagID(tagType, tagID);

    if (tagType <> BRICKLET_NFC_TAG_TYPE_TYPE2) then begin
      WriteLn('Tag is not type-2');
      exit;
    end;

    WriteLn('Found tag of type ' + IntToStr(tagType) + ' with ID [' +
            Format('0x%X', [tagID[0]]) + ' ' +
            Format('0x%X', [tagID[1]]) + ' ' +
            Format('0x%X', [tagID[2]]) + ' ' +
            Format('0x%X', [tagID[3]]) + ']');
    sender.readerRequestPage(1, 4);
  end
  else if state = BRICKLET_NFC_READER_STATE_REQUEST_TAG_ID_ERROR then begin
    WriteLn('Request tag ID error');
  end
  else if state = BRICKLET_NFC_READER_STATE_REQUEST_PAGE_READY then begin
    page := sender.ReaderReadPage;
    WriteLn('Read page: ' +
            Format('0x%X', [page[0]]) + ' ' +
            Format('0x%X', [page[1]]) + ' ' +
            Format('0x%X', [page[2]]) + ' ' +
            Format('0x%X', [page[3]]));
    sender.ReaderWritePage(1, page);
  end
  else if state = BRICKLET_NFC_READER_STATE_WRITE_PAGE_READY then begin
    WriteLn('Write page ready');
  end
  else if state = BRICKLET_NFC_READER_STATE_REQUEST_PAGE_ERROR then begin
    WriteLn('Request page error');
  end
  else if state = BRICKLET_NFC_READER_STATE_WRITE_PAGE_ERROR then begin
    WriteLn('Write page error');
  end;
end;

procedure TExample.Execute;
begin
  { Create IP connection }
  ipcon := TIPConnection.Create;

  { Create device object }
  nfc := TBrickletNFC.Create(UID, ipcon);

  { Connect to brickd }
  ipcon.Connect(HOST, PORT);
  { Don't use device before ipcon is connected }

  { Register reader state changed callback to procedure ReaderStateChangedCB }
  nfc.OnReaderStateChanged := {$ifdef FPC}@{$endif}ReaderStateChangedCB;

  { Enable reader mode }
  nfc.SetMode(BRICKLET_NFC_MODE_READER);

  WriteLn('Press key to exit');
  ReadLn;
  ipcon.Destroy; { Calls ipcon.Disconnect internally }
end;

begin
  e := TExample.Create;
  e.Execute;
  e.Destroy;
end.

API

Since Delphi does not support multiple return values directly, we use the out keyword to return multiple values from a function.

All functions and procedures listed below are thread-safe.

Basic Functions

constructor TBrickletNFC.Create(const uid: string; ipcon: TIPConnection)
Parameters:
  • uid – Type: string
  • ipcon – Type: TIPConnection
Returns:
  • nfc – Type: TBrickletNFC

Creates an object with the unique device ID uid:

nfc := TBrickletNFC.Create('YOUR_DEVICE_UID', ipcon);

This object can then be used after the IP Connection is connected.

procedure TBrickletNFC.SetMode(const mode: byte)
Parameters:
  • mode – Type: byte, Range: See constants, Default: 0

Sets the mode. The NFC Bricklet supports four modes:

  • Off
  • Card Emulation (Cardemu): Emulates a tag for other readers
  • Peer to Peer (P2P): Exchange data with other readers
  • Reader: Reads and writes tags
  • Simple: Automatically reads tag IDs

If you change a mode, the Bricklet will reconfigure the hardware for this mode. Therefore, you can only use functions corresponding to the current mode. For example, in Reader mode you can only use Reader functions.

The following constants are available for this function:

For mode:

  • BRICKLET_NFC_MODE_OFF = 0
  • BRICKLET_NFC_MODE_CARDEMU = 1
  • BRICKLET_NFC_MODE_P2P = 2
  • BRICKLET_NFC_MODE_READER = 3
  • BRICKLET_NFC_MODE_SIMPLE = 4
function TBrickletNFC.GetMode: byte
Returns:
  • mode – Type: byte, Range: See constants, Default: 0

Returns the mode as set by SetMode.

The following constants are available for this function:

For mode:

  • BRICKLET_NFC_MODE_OFF = 0
  • BRICKLET_NFC_MODE_CARDEMU = 1
  • BRICKLET_NFC_MODE_P2P = 2
  • BRICKLET_NFC_MODE_READER = 3
  • BRICKLET_NFC_MODE_SIMPLE = 4
procedure TBrickletNFC.ReaderRequestTagID

After you call ReaderRequestTagID the NFC Bricklet will try to read the tag ID from the tag. After this process is done the state will change. You can either register the OnReaderStateChanged callback or you can poll ReaderGetState to find out about the state change.

If the state changes to ReaderRequestTagIDError it means that either there was no tag present or that the tag has an incompatible type. If the state changes to ReaderRequestTagIDReady it means that a compatible tag was found and that the tag ID has been saved. You can now read out the tag ID by calling ReaderGetTagID.

If two tags are in the proximity of the NFC Bricklet, this function will cycle through the tags. To select a specific tag you have to call ReaderRequestTagID until the correct tag ID is found.

In case of any ReaderError state the selection is lost and you have to start again by calling ReaderRequestTagID.

procedure TBrickletNFC.ReaderGetTagID(out tagType: byte; out tagID: array of byte)
Output Parameters:
  • tagType – Type: byte, Range: See constants
  • tagID – Type: array of byte, Range: [0 to 255]

Returns the tag type and the tag ID. This function can only be called if the NFC Bricklet is currently in one of the ReaderReady states. The returned tag ID is the tag ID that was saved through the last call of ReaderRequestTagID.

To get the tag ID of a tag the approach is as follows:

  1. Call ReaderRequestTagID
  2. Wait for state to change to ReaderRequestTagIDReady (see ReaderGetState or OnReaderStateChanged callback)
  3. Call ReaderGetTagID

The following constants are available for this function:

For tagType:

  • BRICKLET_NFC_TAG_TYPE_MIFARE_CLASSIC = 0
  • BRICKLET_NFC_TAG_TYPE_TYPE1 = 1
  • BRICKLET_NFC_TAG_TYPE_TYPE2 = 2
  • BRICKLET_NFC_TAG_TYPE_TYPE3 = 3
  • BRICKLET_NFC_TAG_TYPE_TYPE4 = 4
  • BRICKLET_NFC_TAG_TYPE_TYPE5 = 5
procedure TBrickletNFC.ReaderGetState(out state: byte; out idle: boolean)
Output Parameters:
  • state – Type: byte, Range: See constants
  • idle – Type: boolean

Returns the current reader state of the NFC Bricklet.

On startup the Bricklet will be in the ReaderInitialization state. The initialization will only take about 20ms. After that it changes to ReaderIdle.

The Bricklet is also reinitialized if the mode is changed, see SetMode.

The functions of this Bricklet can be called in the ReaderIdle state and all of the ReaderReady and ReaderError states.

Example: If you call ReaderRequestPage, the state will change to ReaderRequestPage until the reading of the page is finished. Then it will change to either ReaderRequestPageReady if it worked or to ReaderRequestPageError if it didn't. If the request worked you can get the page by calling ReaderReadPage.

The same approach is used analogously for the other API functions.

The following constants are available for this function:

For state:

  • BRICKLET_NFC_READER_STATE_INITIALIZATION = 0
  • BRICKLET_NFC_READER_STATE_IDLE = 128
  • BRICKLET_NFC_READER_STATE_ERROR = 192
  • BRICKLET_NFC_READER_STATE_REQUEST_TAG_ID = 2
  • BRICKLET_NFC_READER_STATE_REQUEST_TAG_ID_READY = 130
  • BRICKLET_NFC_READER_STATE_REQUEST_TAG_ID_ERROR = 194
  • BRICKLET_NFC_READER_STATE_AUTHENTICATE_MIFARE_CLASSIC_PAGE = 3
  • BRICKLET_NFC_READER_STATE_AUTHENTICATE_MIFARE_CLASSIC_PAGE_READY = 131
  • BRICKLET_NFC_READER_STATE_AUTHENTICATE_MIFARE_CLASSIC_PAGE_ERROR = 195
  • BRICKLET_NFC_READER_STATE_WRITE_PAGE = 4
  • BRICKLET_NFC_READER_STATE_WRITE_PAGE_READY = 132
  • BRICKLET_NFC_READER_STATE_WRITE_PAGE_ERROR = 196
  • BRICKLET_NFC_READER_STATE_REQUEST_PAGE = 5
  • BRICKLET_NFC_READER_STATE_REQUEST_PAGE_READY = 133
  • BRICKLET_NFC_READER_STATE_REQUEST_PAGE_ERROR = 197
  • BRICKLET_NFC_READER_STATE_WRITE_NDEF = 6
  • BRICKLET_NFC_READER_STATE_WRITE_NDEF_READY = 134
  • BRICKLET_NFC_READER_STATE_WRITE_NDEF_ERROR = 198
  • BRICKLET_NFC_READER_STATE_REQUEST_NDEF = 7
  • BRICKLET_NFC_READER_STATE_REQUEST_NDEF_READY = 135
  • BRICKLET_NFC_READER_STATE_REQUEST_NDEF_ERROR = 199
procedure TBrickletNFC.ReaderWriteNDEF(const ndef: array of byte)
Parameters:
  • ndef – Type: array of byte, Range: [0 to 255]

Writes NDEF formated data.

This function currently supports NFC Forum Type 2, 4, 5 and Mifare Classic.

The general approach for writing a NDEF message is as follows:

  1. Call ReaderRequestTagID
  2. Wait for state to change to ReaderRequestTagIDReady (see ReaderGetState or OnReaderStateChanged callback)
  3. If looking for a specific tag then call ReaderGetTagID and check if the expected tag was found, if it was not found got back to step 1
  4. Call ReaderWriteNDEF with the NDEF message that you want to write
  5. Wait for state to change to ReaderWriteNDEFReady (see ReaderGetState or OnReaderStateChanged callback)
procedure TBrickletNFC.ReaderRequestNDEF

Reads NDEF formated data from a tag.

This function currently supports NFC Forum Type 1, 2, 3, 4, 5 and Mifare Classic.

The general approach for reading a NDEF message is as follows:

  1. Call ReaderRequestTagID
  2. Wait for state to change to RequestTagIDReady (see ReaderGetState or OnReaderStateChanged callback)
  3. If looking for a specific tag then call ReaderGetTagID and check if the expected tag was found, if it was not found got back to step 1
  4. Call ReaderRequestNDEF
  5. Wait for state to change to ReaderRequestNDEFReady (see ReaderGetState or OnReaderStateChanged callback)
  6. Call ReaderReadNDEF to retrieve the NDEF message from the buffer
function TBrickletNFC.ReaderReadNDEF: array of byte
Returns:
  • ndef – Type: array of byte, Range: [0 to 255]

Returns the NDEF data from an internal buffer. To fill the buffer with a NDEF message you have to call ReaderRequestNDEF beforehand.

procedure TBrickletNFC.ReaderAuthenticateMifareClassicPage(const page: word; const keyNumber: byte; const key: array [0..5] of byte)
Parameters:
  • page – Type: word, Range: [0 to 216 - 1]
  • keyNumber – Type: byte, Range: See constants
  • key – Type: array [0..5] of byte, Range: [0 to 255]

Mifare Classic tags use authentication. If you want to read from or write to a Mifare Classic page you have to authenticate it beforehand. Each page can be authenticated with two keys: A (key_number = 0) and B (key_number = 1). A new Mifare Classic tag that has not yet been written to can be accessed with key A and the default key [0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF].

The approach to read or write a Mifare Classic page is as follows:

  1. Call ReaderRequestTagID
  2. Wait for state to change to ReaderRequestTagIDReady (see ReaderGetState or OnReaderStateChanged callback)
  3. If looking for a specific tag then call ReaderGetTagID and check if the expected tag was found, if it was not found got back to step 1
  4. Call ReaderAuthenticateMifareClassicPage with page and key for the page
  5. Wait for state to change to ReaderAuthenticatingMifareClassicPageReady (see ReaderGetState or OnReaderStateChanged callback)
  6. Call ReaderRequestPage or ReaderWritePage to read/write page

The authentication will always work for one whole sector (4 pages).

The following constants are available for this function:

For keyNumber:

  • BRICKLET_NFC_KEY_A = 0
  • BRICKLET_NFC_KEY_B = 1
procedure TBrickletNFC.ReaderWritePage(const page: word; const data: array of byte)
Parameters:
  • page – Type: word, Range: See constants
  • data – Type: array of byte, Range: [0 to 255]

Writes a maximum of 8192 bytes starting from the given page. How many pages are written depends on the tag type. The page sizes are as follows:

  • Mifare Classic page size: 16 byte
  • NFC Forum Type 1 page size: 8 byte
  • NFC Forum Type 2 page size: 4 byte
  • NFC Forum Type 3 page size: 16 byte
  • NFC Forum Type 4: No pages, page = file selection (CC or NDEF, see below)
  • NFC Forum Type 5 page size: 4 byte

The general approach for writing to a tag is as follows:

  1. Call ReaderRequestTagID
  2. Wait for state to change to ReaderRequestTagIDReady (see ReaderGetState or OnReaderStateChanged callback)
  3. If looking for a specific tag then call ReaderGetTagID and check if the expected tag was found, if it was not found got back to step 1
  4. Call ReaderWritePage with page number and data
  5. Wait for state to change to ReaderWritePageReady (see ReaderGetState or OnReaderStateChanged callback)

If you use a Mifare Classic tag you have to authenticate a page before you can write to it. See ReaderAuthenticateMifareClassicPage.

NFC Forum Type 4 tags are not organized into pages but different files. We currently support two files: Capability Container file (CC) and NDEF file.

Choose CC by setting page to 3 or NDEF by setting page to 4.

The following constants are available for this function:

For page:

  • BRICKLET_NFC_READER_WRITE_TYPE4_CAPABILITY_CONTAINER = 3
  • BRICKLET_NFC_READER_WRITE_TYPE4_NDEF = 4
procedure TBrickletNFC.ReaderRequestPage(const page: word; const length: word)
Parameters:
  • page – Type: word, Range: See constants
  • length – Type: word, Range: [0 to 213]

Reads a maximum of 8192 bytes starting from the given page and stores them into a buffer. The buffer can then be read out with ReaderReadPage. How many pages are read depends on the tag type. The page sizes are as follows:

  • Mifare Classic page size: 16 byte
  • NFC Forum Type 1 page size: 8 byte
  • NFC Forum Type 2 page size: 4 byte
  • NFC Forum Type 3 page size: 16 byte
  • NFC Forum Type 4: No pages, page = file selection (CC or NDEF, see below)
  • NFC Forum Type 5 page size: 4 byte

The general approach for reading a tag is as follows:

  1. Call ReaderRequestTagID
  2. Wait for state to change to RequestTagIDReady (see ReaderGetState or OnReaderStateChanged callback)
  3. If looking for a specific tag then call ReaderGetTagID and check if the expected tag was found, if it was not found got back to step 1
  4. Call ReaderRequestPage with page number
  5. Wait for state to change to ReaderRequestPageReady (see ReaderGetState or OnReaderStateChanged callback)
  6. Call ReaderReadPage to retrieve the page from the buffer

If you use a Mifare Classic tag you have to authenticate a page before you can read it. See ReaderAuthenticateMifareClassicPage.

NFC Forum Type 4 tags are not organized into pages but different files. We currently support two files: Capability Container file (CC) and NDEF file.

Choose CC by setting page to 3 or NDEF by setting page to 4.

The following constants are available for this function:

For page:

  • BRICKLET_NFC_READER_REQUEST_TYPE4_CAPABILITY_CONTAINER = 3
  • BRICKLET_NFC_READER_REQUEST_TYPE4_NDEF = 4
function TBrickletNFC.ReaderReadPage: array of byte
Returns:
  • data – Type: array of byte, Range: [0 to 255]

Returns the page data from an internal buffer. To fill the buffer with specific pages you have to call ReaderRequestPage beforehand.

procedure TBrickletNFC.CardemuGetState(out state: byte; out idle: boolean)
Output Parameters:
  • state – Type: byte, Range: See constants
  • idle – Type: boolean

Returns the current cardemu state of the NFC Bricklet.

On startup the Bricklet will be in the CardemuInitialization state. The initialization will only take about 20ms. After that it changes to CardemuIdle.

The Bricklet is also reinitialized if the mode is changed, see SetMode.

The functions of this Bricklet can be called in the CardemuIdle state and all of the CardemuReady and CardemuError states.

Example: If you call CardemuStartDiscovery, the state will change to CardemuDiscover until the discovery is finished. Then it will change to either CardemuDiscoverReady if it worked or to CardemuDiscoverError if it didn't.

The same approach is used analogously for the other API functions.

The following constants are available for this function:

For state:

  • BRICKLET_NFC_CARDEMU_STATE_INITIALIZATION = 0
  • BRICKLET_NFC_CARDEMU_STATE_IDLE = 128
  • BRICKLET_NFC_CARDEMU_STATE_ERROR = 192
  • BRICKLET_NFC_CARDEMU_STATE_DISCOVER = 2
  • BRICKLET_NFC_CARDEMU_STATE_DISCOVER_READY = 130
  • BRICKLET_NFC_CARDEMU_STATE_DISCOVER_ERROR = 194
  • BRICKLET_NFC_CARDEMU_STATE_TRANSFER_NDEF = 3
  • BRICKLET_NFC_CARDEMU_STATE_TRANSFER_NDEF_READY = 131
  • BRICKLET_NFC_CARDEMU_STATE_TRANSFER_NDEF_ERROR = 195
procedure TBrickletNFC.CardemuStartDiscovery

Starts the discovery process. If you call this function while a NFC reader device is near to the NFC Bricklet the state will change from CardemuDiscovery to CardemuDiscoveryReady.

If no NFC reader device can be found or if there is an error during discovery the cardemu state will change to CardemuDiscoveryError. In this case you have to restart the discovery process.

If the cardemu state changes to CardemuDiscoveryReady you can start the NDEF message transfer with CardemuWriteNDEF and CardemuStartTransfer.

procedure TBrickletNFC.CardemuWriteNDEF(const ndef: array of byte)
Parameters:
  • ndef – Type: array of byte, Range: [0 to 255]

Writes the NDEF message that is to be transferred to the NFC peer.

The maximum supported NDEF message size in Cardemu mode is 255 byte.

You can call this function at any time in Cardemu mode. The internal buffer will not be overwritten until you call this function again or change the mode.

procedure TBrickletNFC.CardemuStartTransfer(const transfer: byte)
Parameters:
  • transfer – Type: byte, Range: See constants

You can start the transfer of a NDEF message if the cardemu state is CardemuDiscoveryReady.

Before you call this function to start a write transfer, the NDEF message that is to be transferred has to be written via CardemuWriteNDEF first.

After you call this function the state will change to CardemuTransferNDEF. It will change to CardemuTransferNDEFReady if the transfer was successful or CardemuTransferNDEFError if it wasn't.

The following constants are available for this function:

For transfer:

  • BRICKLET_NFC_CARDEMU_TRANSFER_ABORT = 0
  • BRICKLET_NFC_CARDEMU_TRANSFER_WRITE = 1
procedure TBrickletNFC.P2PGetState(out state: byte; out idle: boolean)
Output Parameters:
  • state – Type: byte, Range: See constants
  • idle – Type: boolean

Returns the current P2P state of the NFC Bricklet.

On startup the Bricklet will be in the P2PInitialization state. The initialization will only take about 20ms. After that it changes to P2PIdle.

The Bricklet is also reinitialized if the mode is changed, see SetMode.

The functions of this Bricklet can be called in the P2PIdle state and all of the P2PReady and P2PError states.

Example: If you call P2PStartDiscovery, the state will change to P2PDiscover until the discovery is finished. Then it will change to either P2PDiscoverReady* if it worked or to P2PDiscoverError if it didn't.

The same approach is used analogously for the other API functions.

The following constants are available for this function:

For state:

  • BRICKLET_NFC_P2P_STATE_INITIALIZATION = 0
  • BRICKLET_NFC_P2P_STATE_IDLE = 128
  • BRICKLET_NFC_P2P_STATE_ERROR = 192
  • BRICKLET_NFC_P2P_STATE_DISCOVER = 2
  • BRICKLET_NFC_P2P_STATE_DISCOVER_READY = 130
  • BRICKLET_NFC_P2P_STATE_DISCOVER_ERROR = 194
  • BRICKLET_NFC_P2P_STATE_TRANSFER_NDEF = 3
  • BRICKLET_NFC_P2P_STATE_TRANSFER_NDEF_READY = 131
  • BRICKLET_NFC_P2P_STATE_TRANSFER_NDEF_ERROR = 195
procedure TBrickletNFC.P2PStartDiscovery

Starts the discovery process. If you call this function while another NFC P2P enabled device is near to the NFC Bricklet the state will change from P2PDiscovery to P2PDiscoveryReady.

If no NFC P2P enabled device can be found or if there is an error during discovery the P2P state will change to P2PDiscoveryError. In this case you have to restart the discovery process.

If the P2P state changes to P2PDiscoveryReady you can start the NDEF message transfer with P2PStartTransfer.

procedure TBrickletNFC.P2PWriteNDEF(const ndef: array of byte)
Parameters:
  • ndef – Type: array of byte, Range: [0 to 255]

Writes the NDEF message that is to be transferred to the NFC peer.

The maximum supported NDEF message size for P2P transfer is 255 byte.

You can call this function at any time in P2P mode. The internal buffer will not be overwritten until you call this function again, change the mode or use P2P to read an NDEF messages.

procedure TBrickletNFC.P2PStartTransfer(const transfer: byte)
Parameters:
  • transfer – Type: byte, Range: See constants

You can start the transfer of a NDEF message if the P2P state is P2PDiscoveryReady.

Before you call this function to start a write transfer, the NDEF message that is to be transferred has to be written via P2PWriteNDEF first.

After you call this function the P2P state will change to P2PTransferNDEF. It will change to P2PTransferNDEFReady if the transfer was successfull or P2PTransferNDEFError if it wasn't.

If you started a write transfer you are now done. If you started a read transfer you can now use P2PReadNDEF to read the NDEF message that was written by the NFC peer.

The following constants are available for this function:

For transfer:

  • BRICKLET_NFC_P2P_TRANSFER_ABORT = 0
  • BRICKLET_NFC_P2P_TRANSFER_WRITE = 1
  • BRICKLET_NFC_P2P_TRANSFER_READ = 2
function TBrickletNFC.P2PReadNDEF: array of byte
Returns:
  • ndef – Type: array of byte, Range: [0 to 255]

Returns the NDEF message that was written by a NFC peer in NFC P2P mode.

The NDEF message is ready if you called P2PStartTransfer with a read transfer and the P2P state changed to P2PTransferNDEFReady.

procedure TBrickletNFC.SimpleGetTagID(const index: byte; out tagType: byte; out tagID: array of byte; out lastSeen: longword)
Parameters:
  • index – Type: byte, Range: [0 to 7]
Output Parameters:
  • tagType – Type: byte, Range: See constants
  • tagID – Type: array of byte, Range: [0 to 255]
  • lastSeen – Type: longword, Unit: 1 ms, Range: [0 to 232 - 1]

Returns the tag type and tag ID from simple mode sorted by last seen time for a given index.

Up to eight tags are saved.

The following constants are available for this function:

For tagType:

  • BRICKLET_NFC_TAG_TYPE_MIFARE_CLASSIC = 0
  • BRICKLET_NFC_TAG_TYPE_TYPE1 = 1
  • BRICKLET_NFC_TAG_TYPE_TYPE2 = 2
  • BRICKLET_NFC_TAG_TYPE_TYPE3 = 3
  • BRICKLET_NFC_TAG_TYPE_TYPE4 = 4
  • BRICKLET_NFC_TAG_TYPE_TYPE5 = 5

New in version 2.0.6 (Plugin).

procedure TBrickletNFC.CardemuSetTagID(const tagIDLength: byte; const tagIDData: array [0..6] of byte)
Parameters:
  • tagIDLength – Type: byte, Range: [0 to 7]
  • tagIDData – Type: array [0..6] of byte, Range: [0 to 255]

Sets the tag ID for cardemu mode. The tag ID can either have a length of 4 or 7.

Set a length of 0 for random tag ID (default)

New in version 2.1.0 (Plugin).

procedure TBrickletNFC.CardemuGetTagID(out tagIDLength: byte; out tagIDData: array [0..6] of byte)
Output Parameters:
  • tagIDLength – Type: byte, Range: [0 to 7]
  • tagIDData – Type: array [0..6] of byte, Range: [0 to 255]

Returns the tag ID and length as set by CardemuSetTagID.

New in version 2.1.0 (Plugin).

Advanced Functions

procedure TBrickletNFC.SetDetectionLEDConfig(const config: byte)
Parameters:
  • config – Type: byte, Range: See constants, Default: 3

Sets the detection LED configuration. By default the LED shows if a card/reader is detected.

You can also turn the LED permanently on/off or show a heartbeat.

If the Bricklet is in bootloader mode, the LED is off.

The following constants are available for this function:

For config:

  • BRICKLET_NFC_DETECTION_LED_CONFIG_OFF = 0
  • BRICKLET_NFC_DETECTION_LED_CONFIG_ON = 1
  • BRICKLET_NFC_DETECTION_LED_CONFIG_SHOW_HEARTBEAT = 2
  • BRICKLET_NFC_DETECTION_LED_CONFIG_SHOW_DETECTION = 3
function TBrickletNFC.GetDetectionLEDConfig: byte
Returns:
  • config – Type: byte, Range: See constants, Default: 3

Returns the configuration as set by SetDetectionLEDConfig

The following constants are available for this function:

For config:

  • BRICKLET_NFC_DETECTION_LED_CONFIG_OFF = 0
  • BRICKLET_NFC_DETECTION_LED_CONFIG_ON = 1
  • BRICKLET_NFC_DETECTION_LED_CONFIG_SHOW_HEARTBEAT = 2
  • BRICKLET_NFC_DETECTION_LED_CONFIG_SHOW_DETECTION = 3
procedure TBrickletNFC.SetMaximumTimeout(const timeout: word)
Parameters:
  • timeout – Type: word, Unit: 1 ms, Range: [0 to 216 - 1], Default: 2000

Sets the maximum timeout.

This is a global maximum used for all internal state timeouts. The timeouts depend heavily on the used tags etc. For example: If you use a Type 2 tag and you want to detect if it is present, you have to use ReaderRequestTagID and wait for the state to change to either the error state or the ready state.

With the default configuration this takes 2-3 seconds. By setting the maximum timeout to 100ms you can reduce this time to ~150-200ms. For Type 2 this would also still work with a 20ms timeout (a Type 2 tag answers usually within 10ms). A type 4 tag can take up to 500ms in our tests.

If you need a fast response time to discover if a tag is present or not you can find a good timeout value by trial and error for your specific tag.

By default we use a very conservative timeout, to be sure that any tag can always answer in time.

New in version 2.0.1 (Plugin).

function TBrickletNFC.GetMaximumTimeout: word
Returns:
  • timeout – Type: word, Unit: 1 ms, Range: [0 to 216 - 1], Default: 2000

Returns the timeout as set by SetMaximumTimeout

New in version 2.0.1 (Plugin).

procedure TBrickletNFC.GetSPITFPErrorCount(out errorCountAckChecksum: longword; out errorCountMessageChecksum: longword; out errorCountFrame: longword; out errorCountOverflow: longword)
Output Parameters:
  • errorCountAckChecksum – Type: longword, Range: [0 to 232 - 1]
  • errorCountMessageChecksum – Type: longword, Range: [0 to 232 - 1]
  • errorCountFrame – Type: longword, Range: [0 to 232 - 1]
  • errorCountOverflow – Type: longword, Range: [0 to 232 - 1]

Returns the error count for the communication between Brick and Bricklet.

The errors are divided into

  • ACK checksum errors,
  • message checksum errors,
  • framing errors and
  • overflow errors.

The errors counts are for errors that occur on the Bricklet side. All Bricks have a similar function that returns the errors on the Brick side.

procedure TBrickletNFC.SetStatusLEDConfig(const config: byte)
Parameters:
  • config – Type: byte, Range: See constants, Default: 3

Sets the status LED configuration. By default the LED shows communication traffic between Brick and Bricklet, it flickers once for every 10 received data packets.

You can also turn the LED permanently on/off or show a heartbeat.

If the Bricklet is in bootloader mode, the LED is will show heartbeat by default.

The following constants are available for this function:

For config:

  • BRICKLET_NFC_STATUS_LED_CONFIG_OFF = 0
  • BRICKLET_NFC_STATUS_LED_CONFIG_ON = 1
  • BRICKLET_NFC_STATUS_LED_CONFIG_SHOW_HEARTBEAT = 2
  • BRICKLET_NFC_STATUS_LED_CONFIG_SHOW_STATUS = 3
function TBrickletNFC.GetStatusLEDConfig: byte
Returns:
  • config – Type: byte, Range: See constants, Default: 3

Returns the configuration as set by SetStatusLEDConfig

The following constants are available for this function:

For config:

  • BRICKLET_NFC_STATUS_LED_CONFIG_OFF = 0
  • BRICKLET_NFC_STATUS_LED_CONFIG_ON = 1
  • BRICKLET_NFC_STATUS_LED_CONFIG_SHOW_HEARTBEAT = 2
  • BRICKLET_NFC_STATUS_LED_CONFIG_SHOW_STATUS = 3
function TBrickletNFC.GetChipTemperature: smallint
Returns:
  • temperature – Type: smallint, Unit: 1 °C, Range: [-215 to 215 - 1]

Returns the temperature as measured inside the microcontroller. The value returned is not the ambient temperature!

The temperature is only proportional to the real temperature and it has bad accuracy. Practically it is only useful as an indicator for temperature changes.

procedure TBrickletNFC.Reset

Calling this function will reset the Bricklet. All configurations will be lost.

After a reset you have to create new device objects, calling functions on the existing ones will result in undefined behavior!

procedure TBrickletNFC.GetIdentity(out uid: string; out connectedUid: string; out position: char; out hardwareVersion: array [0..2] of byte; out firmwareVersion: array [0..2] of byte; out deviceIdentifier: word)
Output Parameters:
  • uid – Type: string, Length: up to 8
  • connectedUid – Type: string, Length: up to 8
  • position – Type: char, Range: ['a' to 'h', 'z']
  • hardwareVersion – Type: array [0..2] of byte
    • 0: major – Type: byte, Range: [0 to 255]
    • 1: minor – Type: byte, Range: [0 to 255]
    • 2: revision – Type: byte, Range: [0 to 255]
  • firmwareVersion – Type: array [0..2] of byte
    • 0: major – Type: byte, Range: [0 to 255]
    • 1: minor – Type: byte, Range: [0 to 255]
    • 2: revision – Type: byte, Range: [0 to 255]
  • deviceIdentifier – Type: word, Range: [0 to 216 - 1]

Returns the UID, the UID where the Bricklet is connected to, the position, the hardware and firmware version as well as the device identifier.

The position can be 'a', 'b', 'c', 'd', 'e', 'f', 'g' or 'h' (Bricklet Port). A Bricklet connected to an Isolator Bricklet is always at position 'z'.

The device identifier numbers can be found here. There is also a constant for the device identifier of this Bricklet.

Callbacks

Callbacks can be registered to receive time critical or recurring data from the device. The registration is done by assigning a procedure to an callback property of the device object:

procedure TExample.MyCallback(sender: TBrickletNFC; const value: longint);
begin
  WriteLn(Format('Value: %d', [value]));
end;

nfc.OnExample := {$ifdef FPC}@{$endif}example.MyCallback;

The available callback properties and their parameter types are described below.

Note

Using callbacks for recurring events is always preferred compared to using getters. It will use less USB bandwidth and the latency will be a lot better, since there is no round trip time.

property TBrickletNFC.OnReaderStateChanged
procedure(sender: TBrickletNFC; const state: byte; const idle: boolean) of object;
Callback Parameters:
  • sender – Type: TBrickletNFC
  • state – Type: byte, Range: See constants
  • idle – Type: boolean

This callback is called if the reader state of the NFC Bricklet changes. See ReaderGetState for more information about the possible states.

The following constants are available for this function:

For state:

  • BRICKLET_NFC_READER_STATE_INITIALIZATION = 0
  • BRICKLET_NFC_READER_STATE_IDLE = 128
  • BRICKLET_NFC_READER_STATE_ERROR = 192
  • BRICKLET_NFC_READER_STATE_REQUEST_TAG_ID = 2
  • BRICKLET_NFC_READER_STATE_REQUEST_TAG_ID_READY = 130
  • BRICKLET_NFC_READER_STATE_REQUEST_TAG_ID_ERROR = 194
  • BRICKLET_NFC_READER_STATE_AUTHENTICATE_MIFARE_CLASSIC_PAGE = 3
  • BRICKLET_NFC_READER_STATE_AUTHENTICATE_MIFARE_CLASSIC_PAGE_READY = 131
  • BRICKLET_NFC_READER_STATE_AUTHENTICATE_MIFARE_CLASSIC_PAGE_ERROR = 195
  • BRICKLET_NFC_READER_STATE_WRITE_PAGE = 4
  • BRICKLET_NFC_READER_STATE_WRITE_PAGE_READY = 132
  • BRICKLET_NFC_READER_STATE_WRITE_PAGE_ERROR = 196
  • BRICKLET_NFC_READER_STATE_REQUEST_PAGE = 5
  • BRICKLET_NFC_READER_STATE_REQUEST_PAGE_READY = 133
  • BRICKLET_NFC_READER_STATE_REQUEST_PAGE_ERROR = 197
  • BRICKLET_NFC_READER_STATE_WRITE_NDEF = 6
  • BRICKLET_NFC_READER_STATE_WRITE_NDEF_READY = 134
  • BRICKLET_NFC_READER_STATE_WRITE_NDEF_ERROR = 198
  • BRICKLET_NFC_READER_STATE_REQUEST_NDEF = 7
  • BRICKLET_NFC_READER_STATE_REQUEST_NDEF_READY = 135
  • BRICKLET_NFC_READER_STATE_REQUEST_NDEF_ERROR = 199
property TBrickletNFC.OnCardemuStateChanged
procedure(sender: TBrickletNFC; const state: byte; const idle: boolean) of object;
Callback Parameters:
  • sender – Type: TBrickletNFC
  • state – Type: byte, Range: See constants
  • idle – Type: boolean

This callback is called if the cardemu state of the NFC Bricklet changes. See CardemuGetState for more information about the possible states.

The following constants are available for this function:

For state:

  • BRICKLET_NFC_CARDEMU_STATE_INITIALIZATION = 0
  • BRICKLET_NFC_CARDEMU_STATE_IDLE = 128
  • BRICKLET_NFC_CARDEMU_STATE_ERROR = 192
  • BRICKLET_NFC_CARDEMU_STATE_DISCOVER = 2
  • BRICKLET_NFC_CARDEMU_STATE_DISCOVER_READY = 130
  • BRICKLET_NFC_CARDEMU_STATE_DISCOVER_ERROR = 194
  • BRICKLET_NFC_CARDEMU_STATE_TRANSFER_NDEF = 3
  • BRICKLET_NFC_CARDEMU_STATE_TRANSFER_NDEF_READY = 131
  • BRICKLET_NFC_CARDEMU_STATE_TRANSFER_NDEF_ERROR = 195
property TBrickletNFC.OnP2PStateChanged
procedure(sender: TBrickletNFC; const state: byte; const idle: boolean) of object;
Callback Parameters:
  • sender – Type: TBrickletNFC
  • state – Type: byte, Range: See constants
  • idle – Type: boolean

This callback is called if the P2P state of the NFC Bricklet changes. See P2PGetState for more information about the possible states.

The following constants are available for this function:

For state:

  • BRICKLET_NFC_P2P_STATE_INITIALIZATION = 0
  • BRICKLET_NFC_P2P_STATE_IDLE = 128
  • BRICKLET_NFC_P2P_STATE_ERROR = 192
  • BRICKLET_NFC_P2P_STATE_DISCOVER = 2
  • BRICKLET_NFC_P2P_STATE_DISCOVER_READY = 130
  • BRICKLET_NFC_P2P_STATE_DISCOVER_ERROR = 194
  • BRICKLET_NFC_P2P_STATE_TRANSFER_NDEF = 3
  • BRICKLET_NFC_P2P_STATE_TRANSFER_NDEF_READY = 131
  • BRICKLET_NFC_P2P_STATE_TRANSFER_NDEF_ERROR = 195

Virtual Functions

Virtual functions don't communicate with the device itself, but operate only on the API bindings device object. They can be called without the corresponding IP Connection object being connected.

function TBrickletNFC.GetAPIVersion: array [0..2] of byte
Output Parameters:
  • apiVersion – Type: array [0..2] of byte
    • 0: major – Type: byte, Range: [0 to 255]
    • 1: minor – Type: byte, Range: [0 to 255]
    • 2: revision – Type: byte, Range: [0 to 255]

Returns the version of the API definition implemented by this API bindings. This is neither the release version of this API bindings nor does it tell you anything about the represented Brick or Bricklet.

function TBrickletNFC.GetResponseExpected(const functionId: byte): boolean
Parameters:
  • functionId – Type: byte, Range: See constants
Returns:
  • responseExpected – Type: boolean

Returns the response expected flag for the function specified by the function ID parameter. It is true if the function is expected to send a response, false otherwise.

For getter functions this is enabled by default and cannot be disabled, because those functions will always send a response. For callback configuration functions it is enabled by default too, but can be disabled by SetResponseExpected. For setter functions it is disabled by default and can be enabled.

Enabling the response expected flag for a setter function allows to detect timeouts and other error conditions calls of this setter as well. The device will then send a response for this purpose. If this flag is disabled for a setter function then no response is sent and errors are silently ignored, because they cannot be detected.

The following constants are available for this function:

For functionId:

  • BRICKLET_NFC_FUNCTION_SET_MODE = 1
  • BRICKLET_NFC_FUNCTION_READER_REQUEST_TAG_ID = 3
  • BRICKLET_NFC_FUNCTION_READER_WRITE_NDEF = 6
  • BRICKLET_NFC_FUNCTION_READER_REQUEST_NDEF = 7
  • BRICKLET_NFC_FUNCTION_READER_AUTHENTICATE_MIFARE_CLASSIC_PAGE = 9
  • BRICKLET_NFC_FUNCTION_READER_WRITE_PAGE = 10
  • BRICKLET_NFC_FUNCTION_READER_REQUEST_PAGE = 11
  • BRICKLET_NFC_FUNCTION_CARDEMU_START_DISCOVERY = 15
  • BRICKLET_NFC_FUNCTION_CARDEMU_WRITE_NDEF = 16
  • BRICKLET_NFC_FUNCTION_CARDEMU_START_TRANSFER = 17
  • BRICKLET_NFC_FUNCTION_P2P_START_DISCOVERY = 20
  • BRICKLET_NFC_FUNCTION_P2P_WRITE_NDEF = 21
  • BRICKLET_NFC_FUNCTION_P2P_START_TRANSFER = 22
  • BRICKLET_NFC_FUNCTION_SET_DETECTION_LED_CONFIG = 25
  • BRICKLET_NFC_FUNCTION_SET_MAXIMUM_TIMEOUT = 27
  • BRICKLET_NFC_FUNCTION_CARDEMU_SET_TAG_ID = 30
  • BRICKLET_NFC_FUNCTION_SET_WRITE_FIRMWARE_POINTER = 237
  • BRICKLET_NFC_FUNCTION_SET_STATUS_LED_CONFIG = 239
  • BRICKLET_NFC_FUNCTION_RESET = 243
  • BRICKLET_NFC_FUNCTION_WRITE_UID = 248
procedure TBrickletNFC.SetResponseExpected(const functionId: byte; const responseExpected: boolean)
Parameters:
  • functionId – Type: byte, Range: See constants
  • responseExpected – Type: boolean

Changes the response expected flag of the function specified by the function ID parameter. This flag can only be changed for setter (default value: false) and callback configuration functions (default value: true). For getter functions it is always enabled.

Enabling the response expected flag for a setter function allows to detect timeouts and other error conditions calls of this setter as well. The device will then send a response for this purpose. If this flag is disabled for a setter function then no response is sent and errors are silently ignored, because they cannot be detected.

The following constants are available for this function:

For functionId:

  • BRICKLET_NFC_FUNCTION_SET_MODE = 1
  • BRICKLET_NFC_FUNCTION_READER_REQUEST_TAG_ID = 3
  • BRICKLET_NFC_FUNCTION_READER_WRITE_NDEF = 6
  • BRICKLET_NFC_FUNCTION_READER_REQUEST_NDEF = 7
  • BRICKLET_NFC_FUNCTION_READER_AUTHENTICATE_MIFARE_CLASSIC_PAGE = 9
  • BRICKLET_NFC_FUNCTION_READER_WRITE_PAGE = 10
  • BRICKLET_NFC_FUNCTION_READER_REQUEST_PAGE = 11
  • BRICKLET_NFC_FUNCTION_CARDEMU_START_DISCOVERY = 15
  • BRICKLET_NFC_FUNCTION_CARDEMU_WRITE_NDEF = 16
  • BRICKLET_NFC_FUNCTION_CARDEMU_START_TRANSFER = 17
  • BRICKLET_NFC_FUNCTION_P2P_START_DISCOVERY = 20
  • BRICKLET_NFC_FUNCTION_P2P_WRITE_NDEF = 21
  • BRICKLET_NFC_FUNCTION_P2P_START_TRANSFER = 22
  • BRICKLET_NFC_FUNCTION_SET_DETECTION_LED_CONFIG = 25
  • BRICKLET_NFC_FUNCTION_SET_MAXIMUM_TIMEOUT = 27
  • BRICKLET_NFC_FUNCTION_CARDEMU_SET_TAG_ID = 30
  • BRICKLET_NFC_FUNCTION_SET_WRITE_FIRMWARE_POINTER = 237
  • BRICKLET_NFC_FUNCTION_SET_STATUS_LED_CONFIG = 239
  • BRICKLET_NFC_FUNCTION_RESET = 243
  • BRICKLET_NFC_FUNCTION_WRITE_UID = 248
procedure TBrickletNFC.SetResponseExpectedAll(const responseExpected: boolean)
Parameters:
  • responseExpected – Type: boolean

Changes the response expected flag for all setter and callback configuration functions of this device at once.

Internal Functions

Internal functions are used for maintenance tasks such as flashing a new firmware of changing the UID of a Bricklet. These task should be performed using Brick Viewer instead of using the internal functions directly.

function TBrickletNFC.SetBootloaderMode(const mode: byte): byte
Parameters:
  • mode – Type: byte, Range: See constants
Returns:
  • status – Type: byte, Range: See constants

Sets the bootloader mode and returns the status after the requested mode change was instigated.

You can change from bootloader mode to firmware mode and vice versa. A change from bootloader mode to firmware mode will only take place if the entry function, device identifier and CRC are present and correct.

This function is used by Brick Viewer during flashing. It should not be necessary to call it in a normal user program.

The following constants are available for this function:

For mode:

  • BRICKLET_NFC_BOOTLOADER_MODE_BOOTLOADER = 0
  • BRICKLET_NFC_BOOTLOADER_MODE_FIRMWARE = 1
  • BRICKLET_NFC_BOOTLOADER_MODE_BOOTLOADER_WAIT_FOR_REBOOT = 2
  • BRICKLET_NFC_BOOTLOADER_MODE_FIRMWARE_WAIT_FOR_REBOOT = 3
  • BRICKLET_NFC_BOOTLOADER_MODE_FIRMWARE_WAIT_FOR_ERASE_AND_REBOOT = 4

For status:

  • BRICKLET_NFC_BOOTLOADER_STATUS_OK = 0
  • BRICKLET_NFC_BOOTLOADER_STATUS_INVALID_MODE = 1
  • BRICKLET_NFC_BOOTLOADER_STATUS_NO_CHANGE = 2
  • BRICKLET_NFC_BOOTLOADER_STATUS_ENTRY_FUNCTION_NOT_PRESENT = 3
  • BRICKLET_NFC_BOOTLOADER_STATUS_DEVICE_IDENTIFIER_INCORRECT = 4
  • BRICKLET_NFC_BOOTLOADER_STATUS_CRC_MISMATCH = 5
function TBrickletNFC.GetBootloaderMode: byte
Returns:
  • mode – Type: byte, Range: See constants

Returns the current bootloader mode, see SetBootloaderMode.

The following constants are available for this function:

For mode:

  • BRICKLET_NFC_BOOTLOADER_MODE_BOOTLOADER = 0
  • BRICKLET_NFC_BOOTLOADER_MODE_FIRMWARE = 1
  • BRICKLET_NFC_BOOTLOADER_MODE_BOOTLOADER_WAIT_FOR_REBOOT = 2
  • BRICKLET_NFC_BOOTLOADER_MODE_FIRMWARE_WAIT_FOR_REBOOT = 3
  • BRICKLET_NFC_BOOTLOADER_MODE_FIRMWARE_WAIT_FOR_ERASE_AND_REBOOT = 4
procedure TBrickletNFC.SetWriteFirmwarePointer(const pointer: longword)
Parameters:
  • pointer – Type: longword, Unit: 1 B, Range: [0 to 232 - 1]

Sets the firmware pointer for WriteFirmware. The pointer has to be increased by chunks of size 64. The data is written to flash every 4 chunks (which equals to one page of size 256).

This function is used by Brick Viewer during flashing. It should not be necessary to call it in a normal user program.

function TBrickletNFC.WriteFirmware(const data: array [0..63] of byte): byte
Parameters:
  • data – Type: array [0..63] of byte, Range: [0 to 255]
Returns:
  • status – Type: byte, Range: [0 to 255]

Writes 64 Bytes of firmware at the position as written by SetWriteFirmwarePointer before. The firmware is written to flash every 4 chunks.

You can only write firmware in bootloader mode.

This function is used by Brick Viewer during flashing. It should not be necessary to call it in a normal user program.

procedure TBrickletNFC.WriteUID(const uid: longword)
Parameters:
  • uid – Type: longword, Range: [0 to 232 - 1]

Writes a new UID into flash. If you want to set a new UID you have to decode the Base58 encoded UID string into an integer first.

We recommend that you use Brick Viewer to change the UID.

function TBrickletNFC.ReadUID: longword
Returns:
  • uid – Type: longword, Range: [0 to 232 - 1]

Returns the current UID as an integer. Encode as Base58 to get the usual string version.

Constants

const BRICKLET_NFC_DEVICE_IDENTIFIER

This constant is used to identify a NFC Bricklet.

The GetIdentity function and the TIPConnection.OnEnumerate callback of the IP Connection have a deviceIdentifier parameter to specify the Brick's or Bricklet's type.

const BRICKLET_NFC_DEVICE_DISPLAY_NAME

This constant represents the human readable name of a NFC Bricklet.