LabVIEW - Stepper Brick

Dies ist die Beschreibung der LabVIEW API Bindings für den Stepper Brick. Allgemeine Informationen über die Funktionen und technischen Spezifikationen des Stepper Brick sind in dessen Hardware Beschreibung zusammengefasst.

Eine Installationanleitung für die LabVIEW API Bindings ist Teil deren allgemeine Beschreibung.

API

Prinzipiell kann jede Funktion der LabVIEW Bindings, welche einen Wert ausgibt eine Tinkerforge.TimeoutException melden. Dieser Fehler wird gemeldet wenn das Gerät nicht antwortet. Wenn eine Kabelverbindung genutzt wird, ist es unwahrscheinlich, dass die Exception geworfen wird (unter der Annahme, dass das Gerät nicht abgesteckt wird). Bei einer drahtlosen Verbindung können Zeitüberschreitungen auftreten, sobald die Entfernung zum Gerät zu groß wird.

Der Namensraum für alle Brick/Bricklet Bindings und die IPConnection ist Tinkerforge.*.

Grundfunktionen

BrickStepper(uid, ipcon) → stepper
Eingabe:
  • uid – Typ: String
  • ipcon – Typ: .NET Refnum (IPConnection)
Ausgabe:
  • stepper – Typ: .NET Refnum (BrickStepper)

Erzeugt ein Objekt mit der eindeutigen Geräte ID uid. Dieses Objekt kann benutzt werden, nachdem die IP Connection verbunden ist.

BrickStepper.SetMaxVelocity(velocity)
Eingabe:
  • velocity – Typ: Int32, Einheit: 1 1/s, Wertebereich: [0 bis 216 - 1]

Setzt die maximale Geschwindigkeit des Schrittmotors. Diese Funktion startet nicht den Motor, sondern setzt nur die maximale Geschwindigkeit auf welche der Schrittmotor beschleunigt wird. Um den Motor zu fahren können SetTargetPosition(), SetSteps(), DriveForward() oder DriveBackward() verwendet werden.

BrickStepper.GetMaxVelocity() → velocity
Ausgabe:
  • velocity – Typ: Int32, Einheit: 1 1/s, Wertebereich: [0 bis 216 - 1]

Gibt die Geschwindigkeit zurück, wie von SetMaxVelocity() gesetzt.

BrickStepper.GetCurrentVelocity() → velocity
Ausgabe:
  • velocity – Typ: Int32, Einheit: 1 1/s, Wertebereich: [0 bis 216 - 1]

Gibt die aktuelle Geschwindigkeit des Schrittmotors zurück.

BrickStepper.SetSpeedRamping(acceleration, deacceleration)
Eingabe:
  • acceleration – Typ: Int32, Einheit: 1 1/s², Wertebereich: [0 bis 216 - 1], Standardwert: 1000
  • deacceleration – Typ: Int32, Einheit: 1 1/s², Wertebereich: [0 bis 216 - 1], Standardwert: 1000

Setzt die Beschleunigung und die Verzögerung des Schrittmotors. Eine Beschleunigung von 1000 bedeutet, dass jede Sekunde die Geschwindigkeit um 1000 Schritte/s erhöht wird.

Beispiel: Wenn die aktuelle Geschwindigkeit 0 ist und es soll auf eine Geschwindigkeit von 8000 Schritten/s in 10 Sekunden beschleunigt werden, muss die Beschleunigung auf 800 Schritte/s² gesetzt werden.

Eine Beschleunigung/Verzögerung von 0 bedeutet ein sprunghaftes Beschleunigen/Verzögern (nicht empfohlen).

BrickStepper.GetSpeedRamping() → acceleration, deacceleration
Ausgabe:
  • acceleration – Typ: Int32, Einheit: 1 1/s², Wertebereich: [0 bis 216 - 1], Standardwert: 1000
  • deacceleration – Typ: Int32, Einheit: 1 1/s², Wertebereich: [0 bis 216 - 1], Standardwert: 1000

Gibt die Beschleunigung und Verzögerung zurück, wie von SetSpeedRamping() gesetzt.

BrickStepper.FullBrake()

Führt eine aktive Vollbremsung aus.

Warnung

Diese Funktion ist für Notsituationen bestimmt, in denen ein unverzüglicher Halt notwendig ist. Abhängig von der aktuellen Geschwindigkeit und der Kraft des Motors kann eine Vollbremsung brachial sein.

Ein Aufruf von Stop() stoppt den Motor.

BrickStepper.SetSteps(steps)
Eingabe:
  • steps – Typ: Int32, Wertebereich: [-231 bis 231 - 1]

Setzt die Anzahl der Schritte die der Schrittmotor fahren soll. Positive Werte fahren den Motor vorwärts und negative rückwärts. Dabei wird die Geschwindigkeit, Beschleunigung und Verzögerung, wie mit SetMaxVelocity() und SetSpeedRamping() gesetzt, verwendet.

BrickStepper.GetSteps() → steps
Ausgabe:
  • steps – Typ: Int32, Wertebereich: [-231 bis 231 - 1]

Gibt die letzten Schritte zurück, wie von SetSteps() gesetzt.

BrickStepper.GetRemainingSteps() → steps
Ausgabe:
  • steps – Typ: Int32, Wertebereich: [-231 bis 231 - 1]

Gibt die verbleibenden Schritte des letzten Aufrufs von SetSteps() zurück. Beispiel: Wenn SetSteps() mit 2000 aufgerufen wird und GetRemainingSteps() aufgerufen wird wenn der Motor 500 Schritte fahren hat, wird 1500 zurückgegeben.

BrickStepper.DriveForward()

Fährt den Schrittmotor vorwärts bis DriveBackward() oder Stop() aufgerufen wird. Dabei wird die Geschwindigkeit, Beschleunigung und Verzögerung, wie mit SetMaxVelocity() und SetSpeedRamping() gesetzt, verwendet.

BrickStepper.DriveBackward()

Fährt den Schrittmotor rückwärts bis DriveForward() oder Stop() aufgerufen wird. Dabei wird die Geschwindigkeit, Beschleunigung und Verzögerung, wie mit SetMaxVelocity() und SetSpeedRamping() gesetzt, verwendet.

BrickStepper.Stop()

Stoppt den Schrittmotor mit der Verzögerung, wie von SetSpeedRamping() gesetzt.

BrickStepper.SetMotorCurrent(current)
Eingabe:
  • current – Typ: Int32, Einheit: 1 mA, Wertebereich: [100 bis 2291], Standardwert: 800

Setzt den Strom mit welchem der Motor angetrieben wird.

Warnung

Dieser Wert sollte nicht über die Spezifikation des Schrittmotors gesetzt werden. Sonst ist eine Beschädigung des Motors möglich.

BrickStepper.GetMotorCurrent() → current
Ausgabe:
  • current – Typ: Int32, Einheit: 1 mA, Wertebereich: [100 bis 2291], Standardwert: 800

Gibt den Strom zurück, wie von SetMotorCurrent() gesetzt.

BrickStepper.Enable()

Aktiviert die Treiberstufe. Die Treiberparameter können vor der Aktivierung konfiguriert werden (maximale Geschwindigkeit, Beschleunigung, etc.).

BrickStepper.Disable()

Deaktiviert die Treiberstufe. Die Konfiguration (Geschwindigkeit, Beschleunigung, etc.) bleibt erhalten aber der Motor wird nicht angesteuert bis eine erneute Aktivierung erfolgt.

Warnung

Die Treiberstufe zu deaktivieren während der Motor sich noch dreht kann zur Beschädigung der Treiberstufe führen. Der Motor sollte durch Aufrufen der Stop() Funktion gestoppt werden, bevor die Treiberstufe deaktiviert wird. Die Stop() Funktion wartet nicht bis der Motor wirklich zum Stillstand gekommen ist. Dazu muss nach dem Aufruf der Stop() Funktion eine angemessen Zeit gewartet werden bevor die Disable() Funktion aufgerufen wird.

BrickStepper.IsEnabled() → enabled
Ausgabe:
  • enabled – Typ: Boolean, Standardwert: F

Gibt true zurück wenn die Treiberstufe aktiv ist, sonst false.

Fortgeschrittene Funktionen

BrickStepper.SetCurrentPosition(position)
Eingabe:
  • position – Typ: Int32, Wertebereich: [-231 bis 231 - 1]

Setzt den aktuellen Schrittwert des internen Schrittzählers. Dies kann benutzt werden um die aktuelle Position auf 0 zu setzen wenn ein definierter Startpunkt erreicht wurde (z.B. wenn eine CNC Maschine eine Ecke erreicht).

BrickStepper.GetCurrentPosition() → position
Ausgabe:
  • position – Typ: Int32, Wertebereich: [-231 bis 231 - 1]

Gibt die aktuelle Position des Schrittmotors in Schritten zurück. Nach dem Hochfahren ist die Position 0. Die Schritte werden bei Verwendung aller möglichen Fahrfunktionen gezählt (SetTargetPosition(), SetSteps(), DriveForward() der DriveBackward()). Es ist auch möglich den Schrittzähler auf 0 oder jeden anderen gewünschten Wert zu setzen mit SetCurrentPosition().

BrickStepper.SetTargetPosition(position)
Eingabe:
  • position – Typ: Int32, Wertebereich: [-231 bis 231 - 1]

Setzt die Zielposition des Schrittmotors in Schritten. Beispiel: Wenn die aktuelle Position des Motors 500 ist und SetTargetPosition() mit 1000 aufgerufen wird, dann verfährt der Schrittmotor 500 Schritte vorwärts. Dabei wird die Geschwindigkeit, Beschleunigung und Verzögerung, wie mit SetMaxVelocity() und SetSpeedRamping() gesetzt, verwendet.

Ein Aufruf von SetTargetPosition() mit dem Parameter x ist äquivalent mit einem Aufruf von SetSteps() mit dem Parameter (x - GetCurrentPosition()).

BrickStepper.GetTargetPosition() → position
Ausgabe:
  • position – Typ: Int32, Wertebereich: [-231 bis 231 - 1]

Gibt die letzte Zielposition zurück, wie von SetTargetPosition() gesetzt.

BrickStepper.SetStepMode(mode)
Eingabe:
  • mode – Typ: Byte, Wertebereich: Siehe Konstanten, Standardwert: 8

Setzt den Schrittmodus des Schrittmotors. Mögliche Werte sind:

  • Vollschritt = 1
  • Halbschritt = 2
  • Viertelschritt = 4
  • Achtelschritt = 8

Ein höherer Wert erhöht die Auflösung und verringert das Drehmoment des Schrittmotors.

Die folgenden Konstanten sind für diese Funktion verfügbar:

Für mode:

  • BrickStepper.STEP_MODE_FULL_STEP = 1
  • BrickStepper.STEP_MODE_HALF_STEP = 2
  • BrickStepper.STEP_MODE_QUARTER_STEP = 4
  • BrickStepper.STEP_MODE_EIGHTH_STEP = 8
BrickStepper.GetStepMode() → mode
Ausgabe:
  • mode – Typ: Byte, Wertebereich: Siehe Konstanten, Standardwert: 8

Gibt den Schrittmodus zurück, wie von SetStepMode() gesetzt.

Die folgenden Konstanten sind für diese Funktion verfügbar:

Für mode:

  • BrickStepper.STEP_MODE_FULL_STEP = 1
  • BrickStepper.STEP_MODE_HALF_STEP = 2
  • BrickStepper.STEP_MODE_QUARTER_STEP = 4
  • BrickStepper.STEP_MODE_EIGHTH_STEP = 8
BrickStepper.GetStackInputVoltage() → voltage
Ausgabe:
  • voltage – Typ: Int32, Einheit: 1 mV, Wertebereich: [0 bis 216 - 1]

Gibt die Eingangsspannung des Stapels zurück. Die Eingangsspannung des Stapel wird über diesen bereitgestellt und von einer Step-Down oder Step-Up Power Supply erzeugt.

BrickStepper.GetExternalInputVoltage() → voltage
Ausgabe:
  • voltage – Typ: Int32, Einheit: 1 mV, Wertebereich: [0 bis 216 - 1]

Gibt die externe Eingangsspannung zurück. Die externe Eingangsspannung wird über die schwarze Stromversorgungsbuchse, in den Stepper Brick, eingespeist.

Sobald eine externe Eingangsspannung und die Spannungsversorgung des Stapels anliegt, wird der Motor über die externe Spannung versorgt. Sollte nur die Spannungsversorgung des Stapels verfügbar sein, erfolgt die Versorgung des Motors über diese.

Warnung

Das bedeutet, bei einer hohen Versorgungsspannung des Stapels und einer geringen externen Versorgungsspannung erfolgt die Spannungsversorgung des Motors über die geringere externe Versorgungsspannung. Wenn dann die externe Spannungsversorgung getrennt wird, erfolgt sofort die Versorgung des Motors über die höhere Versorgungsspannung des Stapels.

BrickStepper.GetCurrentConsumption() → current
Ausgabe:
  • current – Typ: Int32, Einheit: 1 mA, Wertebereich: [0 bis 216 - 1]

Gibt die Stromaufnahme des Motors zurück.

BrickStepper.SetDecay(decay)
Eingabe:
  • decay – Typ: Int32, Wertebereich: [0 bis 216 - 1], Standardwert: 10000

Setzt den Decay Modus (Abklingmodus) des Schrittmotors. Ein Wert von 0 setzt den Fast Decay Modus (schneller Stromabbau), ein Wert von 65535 den Slow Decay Modus (langsamer Stromabbau) ein Wert dazwischen den Mixed Decay Modus (Nutzung beider Modi).

Eine Änderung des Decay Modus ist nur möglich wenn die Synchrongleichrichtung aktiviert ist (siehe SetSyncRect()).

Für eine gute Erläuterung der verschiedenen Decay Modi siehe diesen Blogeintrag (Englisch) von Avayan oder diesen Blogeintrag (Deutsch) von T. Ostermann.

Ein guter Decay Modus ist leider unterschiedlich für jeden Motor. Der beste Weg einen guten Decay Modus für den jeweiligen Schrittmotor zu finden, wenn der Strom nicht mit einem Oszilloskop gemessen werden kann, ist auf die Geräusche des Motors zu hören. Wenn der Wert zu gering ist, ist oftmals ein hoher Ton zu hören und wenn er zu hoch ist, oftmals ein brummendes Geräusch.

Im Allgemeinen ist der Fast Decay Modus (kleine Werte) geräuschvoller, erlaubt aber höhere Motorgeschwindigkeiten.

Bemerkung

Es existiert leider keine Formel zur Berechnung des optimalen Decay Modus eines Schrittmotors. Sollten Probleme mit lauten Geräuschen oder einer zu geringen maximalen Motorgeschwindigkeit bestehen, bleibt nur Ausprobieren um einen besseren Decay Modus zu finden.

BrickStepper.GetDecay() → decay
Ausgabe:
  • decay – Typ: Int32, Wertebereich: [0 bis 216 - 1], Standardwert: 10000

Gibt den Decay Modus zurück, wie von SetDecay() gesetzt.

BrickStepper.SetSyncRect(syncRect)
Eingabe:
  • syncRect – Typ: Boolean, Standardwert: F

Aktiviert oder deaktiviert (true oder false) die Synchrongleichrichtung.

Bei aktiver Synchrongleichrichtung kann der Decay Modus geändert werden (Siehe SetDecay()). Ohne Synchrongleichrichtung wird der Fast Decay Modus verwendet.

Für eine Erläuterung der Synchrongleichrichtung siehe hier.

Warnung

Wenn hohe Geschwindigkeiten (> 10000 Schritte/s) mit einem großen Schrittmotor mit einer hohen Induktivität genutzt werden sollen, wird dringend geraten die Synchrongleichrichtung zu deaktivieren. Sonst kann es vorkommen, dass der Brick die Last nicht bewältigen kann und überhitzt.

BrickStepper.IsSyncRect() → syncRect
Ausgabe:
  • syncRect – Typ: Boolean, Standardwert: F

Gibt zurück ob die Synchrongleichrichtung aktiviert ist.

BrickStepper.SetTimeBase(timeBase)
Eingabe:
  • timeBase – Typ: Int64, Einheit: 1 s, Wertebereich: [0 bis 232 - 1], Standardwert: 1

Setzt die Zeitbasis der Geschwindigkeit und Beschleunigung des Stepper Brick.

Beispiel: Wenn aller 1,5 Sekunden ein Schritt gefahren werden soll, kann die Zeitbasis auf 15 und die Geschwindigkeit auf 10 gesetzt werden. Damit ist die Geschwindigkeit 10Schritte/15s = 1Schritt/1,5s.

BrickStepper.GetTimeBase() → timeBase
Ausgabe:
  • timeBase – Typ: Int64, Einheit: 1 s, Wertebereich: [0 bis 232 - 1], Standardwert: 1

Gibt die Zeitbasis zurück, wie von SetTimeBase() gesetzt.

BrickStepper.GetAllData() → currentVelocity, currentPosition, remainingSteps, stackVoltage, externalVoltage, currentConsumption
Ausgabe:
  • currentVelocity – Typ: Int32, Einheit: 1 1/s, Wertebereich: [0 bis 216 - 1]
  • currentPosition – Typ: Int32, Wertebereich: [-231 bis 231 - 1]
  • remainingSteps – Typ: Int32, Wertebereich: [-231 bis 231 - 1]
  • stackVoltage – Typ: Int32, Einheit: 1 mV, Wertebereich: [0 bis 216 - 1]
  • externalVoltage – Typ: Int32, Einheit: 1 mV, Wertebereich: [0 bis 216 - 1]
  • currentConsumption – Typ: Int32, Einheit: 1 mA, Wertebereich: [0 bis 216 - 1]

Gibt die folgenden Parameter zurück: Die aktuelle Geschwindigkeit, die aktuelle Position, die verbleibenden Schritte, die Spannung des Stapels, die externe Spannung und der aktuelle Stromverbrauch des Schrittmotors.

Es existiert auch ein Callback für diese Funktion, siehe AllDataCallback Callback.

BrickStepper.SetSPITFPBaudrateConfig(enableDynamicBaudrate, minimumDynamicBaudrate)
Eingabe:
  • enableDynamicBaudrate – Typ: Boolean, Standardwert: T
  • minimumDynamicBaudrate – Typ: Int64, Einheit: 1 Bd, Wertebereich: [400000 bis 2000000], Standardwert: 400000

Das SPITF-Protokoll kann mit einer dynamischen Baudrate genutzt werden. Wenn die dynamische Baudrate aktiviert ist, versucht der Brick die Baudrate anhand des Datenaufkommens zwischen Brick und Bricklet anzupassen.

Die Baudrate wird exponentiell erhöht wenn viele Daten gesendet/empfangen werden und linear verringert wenn wenig Daten gesendet/empfangen werden.

Diese Vorgehensweise verringert die Baudrate in Anwendungen wo nur wenig Daten ausgetauscht werden müssen (z.B. eine Wetterstation) und erhöht die Robustheit. Wenn immer viele Daten ausgetauscht werden (z.B. Thermal Imaging Bricklet), wird die Baudrate automatisch erhöht.

In Fällen wo wenige Daten all paar Sekunden so schnell wie Möglich übertragen werden sollen (z.B. RS485 Bricklet mit hoher Baudrate aber kleinem Payload) kann die dynamische Baudrate zum maximieren der Performance ausgestellt werden.

Die maximale Baudrate kann pro Port mit der Funktion SetSPITFPBaudrate(). gesetzt werden. Falls die dynamische Baudrate nicht aktiviert ist, wird die Baudrate wie von SetSPITFPBaudrate() gesetzt statisch verwendet.

Neu in Version 2.3.6 (Firmware).

BrickStepper.GetSPITFPBaudrateConfig() → enableDynamicBaudrate, minimumDynamicBaudrate
Ausgabe:
  • enableDynamicBaudrate – Typ: Boolean, Standardwert: T
  • minimumDynamicBaudrate – Typ: Int64, Einheit: 1 Bd, Wertebereich: [400000 bis 2000000], Standardwert: 400000

Gibt die Baudratenkonfiguration zurück, siehe SetSPITFPBaudrateConfig().

Neu in Version 2.3.6 (Firmware).

BrickStepper.GetSendTimeoutCount(communicationMethod) → timeoutCount
Eingabe:
  • communicationMethod – Typ: Byte, Wertebereich: Siehe Konstanten
Ausgabe:
  • timeoutCount – Typ: Int64, Wertebereich: [0 bis 232 - 1]

Gibt den Timeout-Zähler für die verschiedenen Kommunikationsmöglichkeiten zurück

Die Kommunikationsmöglichkeiten 0-2 stehen auf allen Bricks zur verfügung, 3-7 nur auf Master Bricks.

Diese Funktion ist hauptsächlich zum debuggen während der Entwicklung gedacht. Im normalen Betrieb sollten alle Zähler fast immer auf 0 stehen bleiben.

Die folgenden Konstanten sind für diese Funktion verfügbar:

Für communicationMethod:

  • BrickStepper.COMMUNICATION_METHOD_NONE = 0
  • BrickStepper.COMMUNICATION_METHOD_USB = 1
  • BrickStepper.COMMUNICATION_METHOD_SPI_STACK = 2
  • BrickStepper.COMMUNICATION_METHOD_CHIBI = 3
  • BrickStepper.COMMUNICATION_METHOD_RS485 = 4
  • BrickStepper.COMMUNICATION_METHOD_WIFI = 5
  • BrickStepper.COMMUNICATION_METHOD_ETHERNET = 6
  • BrickStepper.COMMUNICATION_METHOD_WIFI_V2 = 7

Neu in Version 2.3.4 (Firmware).

BrickStepper.SetSPITFPBaudrate(brickletPort, baudrate)
Eingabe:
  • brickletPort – Typ: Char, Wertebereich: ["a" bis "b"]
  • baudrate – Typ: Int64, Einheit: 1 Bd, Wertebereich: [400000 bis 2000000], Standardwert: 1400000

Setzt die Baudrate eines spezifischen Bricklet Ports .

Für einen höheren Durchsatz der Bricklets kann die Baudrate erhöht werden. Wenn der Fehlerzähler auf Grund von lokaler Störeinstrahlung hoch ist (siehe GetSPITFPErrorCount()) kann die Baudrate verringert werden.

Wenn das Feature der dynamische Baudrate aktiviert ist, setzt diese Funktion die maximale Baudrate (siehe SetSPITFPBaudrateConfig()).

EMV Tests werden mit der Standardbaudrate durchgeführt. Falls eine CE-Kompatibilität o.ä. in der Anwendung notwendig ist empfehlen wir die Baudrate nicht zu ändern.

Neu in Version 2.3.3 (Firmware).

BrickStepper.GetSPITFPBaudrate(brickletPort) → baudrate
Eingabe:
  • brickletPort – Typ: Char, Wertebereich: ["a" bis "b"]
Ausgabe:
  • baudrate – Typ: Int64, Einheit: 1 Bd, Wertebereich: [400000 bis 2000000], Standardwert: 1400000

Gibt die Baudrate für einen Bricklet Port zurück, siehe SetSPITFPBaudrate().

Neu in Version 2.3.3 (Firmware).

BrickStepper.GetSPITFPErrorCount(brickletPort) → errorCountACKChecksum, errorCountMessageChecksum, errorCountFrame, errorCountOverflow
Eingabe:
  • brickletPort – Typ: Char, Wertebereich: ["a" bis "b"]
Ausgabe:
  • errorCountACKChecksum – Typ: Int64, Wertebereich: [0 bis 232 - 1]
  • errorCountMessageChecksum – Typ: Int64, Wertebereich: [0 bis 232 - 1]
  • errorCountFrame – Typ: Int64, Wertebereich: [0 bis 232 - 1]
  • errorCountOverflow – Typ: Int64, Wertebereich: [0 bis 232 - 1]

Gibt die Anzahl der Fehler die während der Kommunikation zwischen Brick und Bricklet aufgetreten sind zurück.

Die Fehler sind aufgeteilt in

  • ACK-Checksummen Fehler,
  • Message-Checksummen Fehler,
  • Framing Fehler und
  • Overflow Fehler.

Die Fehlerzähler sind für Fehler die auf der Seite des Bricks auftreten. Jedes Bricklet hat eine ähnliche Funktion welche die Fehler auf Brickletseite ausgibt.

Neu in Version 2.3.3 (Firmware).

BrickStepper.EnableStatusLED()

Aktiviert die Status LED.

Die Status LED ist die blaue LED neben dem USB-Stecker. Wenn diese aktiviert ist, ist sie an und sie flackert wenn Daten transferiert werden. Wenn sie deaktiviert ist, ist sie immer aus.

Der Standardzustand ist aktiviert.

Neu in Version 2.3.1 (Firmware).

BrickStepper.DisableStatusLED()

Deaktiviert die Status LED.

Die Status LED ist die blaue LED neben dem USB-Stecker. Wenn diese aktiviert ist, ist sie an und sie flackert wenn Daten transferiert werden. Wenn sie deaktiviert ist, ist sie immer aus.

Der Standardzustand ist aktiviert.

Neu in Version 2.3.1 (Firmware).

BrickStepper.IsStatusLEDEnabled() → enabled
Ausgabe:
  • enabled – Typ: Boolean, Standardwert: T

Gibt true zurück wenn die Status LED aktiviert ist, false sonst.

Neu in Version 2.3.1 (Firmware).

BrickStepper.GetChipTemperature() → temperature
Ausgabe:
  • temperature – Typ: Int16, Einheit: 1/10 °C, Wertebereich: [-215 bis 215 - 1]

Gibt die Temperatur, gemessen im Mikrocontroller, aus. Der Rückgabewert ist nicht die Umgebungstemperatur.

Die Temperatur ist lediglich proportional zur echten Temperatur und hat eine Genauigkeit von ±15%. Daher beschränkt sich der praktische Nutzen auf die Indikation von Temperaturveränderungen.

BrickStepper.Reset()

Ein Aufruf dieser Funktion setzt den Brick zurück. Befindet sich der Brick innerhalb eines Stapels wird der gesamte Stapel zurück gesetzt.

Nach dem Zurücksetzen ist es notwendig neue Geräteobjekte zu erzeugen, Funktionsaufrufe auf bestehende führt zu undefiniertem Verhalten.

BrickStepper.GetIdentity() → uid, connectedUid, position, hardwareVersion, firmwareVersion, deviceIdentifier
Ausgabe:
  • uid – Typ: String, Länge: bis zu 8
  • connectedUid – Typ: String, Länge: bis zu 8
  • position – Typ: Char, Wertebereich: ["0" bis "8"]
  • hardwareVersion – Typ: Byte[3]
    • 0: major – Typ: Byte, Wertebereich: [0 bis 255]
    • 1: minor – Typ: Byte, Wertebereich: [0 bis 255]
    • 2: revision – Typ: Byte, Wertebereich: [0 bis 255]
  • firmwareVersion – Typ: Byte[3]
    • 0: major – Typ: Byte, Wertebereich: [0 bis 255]
    • 1: minor – Typ: Byte, Wertebereich: [0 bis 255]
    • 2: revision – Typ: Byte, Wertebereich: [0 bis 255]
  • deviceIdentifier – Typ: Int32, Wertebereich: [0 bis 216 - 1]

Gibt die UID, die UID zu der der Brick verbunden ist, die Position, die Hard- und Firmware Version sowie den Device Identifier zurück.

Die Position ist die Position im Stack von '0' (unterster Brick) bis '8' (oberster Brick).

Eine Liste der Device Identifier Werte ist hier zu finden. Es gibt auch eine Konstante für den Device Identifier dieses Bricks.

Konfigurationsfunktionen für Callbacks

BrickStepper.SetMinimumVoltage(voltage)
Eingabe:
  • voltage – Typ: Int32, Einheit: 1 mV, Wertebereich: [0 bis 216 - 1], Standardwert: 8000

Setzt die minimale Spannung, bei welcher der UnderVoltageCallback Callback ausgelöst wird. Der kleinste mögliche Wert mit dem der Stepper Brick noch funktioniert, ist 8V. Mit dieser Funktion kann eine Entladung der versorgenden Batterie detektiert werden. Beim Einsatz einer Netzstromversorgung wird diese Funktionalität höchstwahrscheinlich nicht benötigt.

BrickStepper.GetMinimumVoltage() → voltage
Ausgabe:
  • voltage – Typ: Int32, Einheit: 1 mV, Wertebereich: [0 bis 216 - 1], Standardwert: 8000

Gibt die minimale Spannung zurück, wie von SetMinimumVoltage() gesetzt.

BrickStepper.SetAllDataPeriod(period)
Eingabe:
  • period – Typ: Int64, Einheit: 1 ms, Wertebereich: [0 bis 232 - 1], Standardwert: 0

Setzt die Periode mit welcher der AllDataCallback Callback ausgelöst wird. Ein Wert von 0 deaktiviert den Callback.

BrickStepper.GetAllDataPeriod() → period
Ausgabe:
  • period – Typ: Int64, Einheit: 1 ms, Wertebereich: [0 bis 232 - 1], Standardwert: 0

Gibt die Periode zurück, wie von SetAllDataPeriod() gesetzt.

Callbacks

Callbacks können registriert werden um zeitkritische oder wiederkehrende Daten vom Gerät zu erhalten. Die Registrierung erfolgt indem eine Funktion einem Callback Property des Geräte Objektes zugewiesen wird. Die verfügbaren Callback Properties und ihre Parametertypen werden weiter unten beschrieben.

Bemerkung

Callbacks für wiederkehrende Ereignisse zu verwenden ist immer zu bevorzugen gegenüber der Verwendung von Abfragen. Es wird weniger USB-Bandbreite benutzt und die Latenz ist erheblich geringer, da es keine Paketumlaufzeit gibt.

event BrickStepper.UnderVoltageCallback → sender, voltage
Callback-Ausgabe:
  • sender – Typ: .NET Refnum (BrickStepper)
  • voltage – Typ: Int32, Einheit: 1 mV, Wertebereich: [0 bis 216 - 1]

Dieser Callback wird ausgelöst, wenn die Eingangsspannung unter den, mittels SetMinimumVoltage() gesetzten, Schwellwert sinkt. Der Parameter ist die aktuelle Spannung.

event BrickStepper.PositionReachedCallback → sender, position
Callback-Ausgabe:
  • sender – Typ: .NET Refnum (BrickStepper)
  • position – Typ: Int32, Wertebereich: [-231 bis 231 - 1]

Dieser Callback wird ausgelöst immer wenn eine konfigurierte Position, wie von SetSteps() oder SetTargetPosition() gesetzt, erreicht wird.

Bemerkung

Da es nicht möglich ist eine Rückmeldung vom Schrittmotor zu erhalten, funktioniert dies nur wenn die konfigurierte Beschleunigung (siehe SetSpeedRamping()) kleiner oder gleich der maximalen Beschleunigung des Motors ist. Andernfalls wird der Motor hinter dem Vorgabewert zurückbleiben und der Callback wird zu früh ausgelöst.

event BrickStepper.AllDataCallback → sender, currentVelocity, currentPosition, remainingSteps, stackVoltage, externalVoltage, currentConsumption
Callback-Ausgabe:
  • sender – Typ: .NET Refnum (BrickStepper)
  • currentVelocity – Typ: Int32, Einheit: 1 1/s, Wertebereich: [0 bis 216 - 1]
  • currentPosition – Typ: Int32, Wertebereich: [-231 bis 231 - 1]
  • remainingSteps – Typ: Int32, Wertebereich: [-231 bis 231 - 1]
  • stackVoltage – Typ: Int32, Einheit: 1 mV, Wertebereich: [0 bis 216 - 1]
  • externalVoltage – Typ: Int32, Einheit: 1 mV, Wertebereich: [0 bis 216 - 1]
  • currentConsumption – Typ: Int32, Einheit: 1 mA, Wertebereich: [0 bis 216 - 1]

Dieser Callback wird mit der Periode, wie gesetzt mit SetAllDataPeriod(), ausgelöst. Die Parameter sind die aktuelle Geschwindigkeit, die aktuelle Position, die verbleibenden Schritte, die Spannung des Stapels, die externe Spannung und der aktuelle Stromverbrauch des Schrittmotors.

event BrickStepper.NewStateCallback → sender, stateNew, statePrevious
Callback-Ausgabe:
  • sender – Typ: .NET Refnum (BrickStepper)
  • stateNew – Typ: Byte, Wertebereich: Siehe Konstanten
  • statePrevious – Typ: Byte, Wertebereich: Siehe Konstanten

Dieser Callback wird immer dann ausgelöst, wenn der Stepper Brick einen neuen Zustand erreicht. Es wird sowohl der neue wie auch der alte Zustand zurückgegeben.

Die folgenden Konstanten sind für diese Funktion verfügbar:

Für stateNew:

  • BrickStepper.STATE_STOP = 1
  • BrickStepper.STATE_ACCELERATION = 2
  • BrickStepper.STATE_RUN = 3
  • BrickStepper.STATE_DEACCELERATION = 4
  • BrickStepper.STATE_DIRECTION_CHANGE_TO_FORWARD = 5
  • BrickStepper.STATE_DIRECTION_CHANGE_TO_BACKWARD = 6

Für statePrevious:

  • BrickStepper.STATE_STOP = 1
  • BrickStepper.STATE_ACCELERATION = 2
  • BrickStepper.STATE_RUN = 3
  • BrickStepper.STATE_DEACCELERATION = 4
  • BrickStepper.STATE_DIRECTION_CHANGE_TO_FORWARD = 5
  • BrickStepper.STATE_DIRECTION_CHANGE_TO_BACKWARD = 6

Virtuelle Funktionen

Virtuelle Funktionen kommunizieren nicht mit dem Gerät selbst, sie arbeiten nur auf dem API Bindings Objekt. Dadurch können sie auch aufgerufen werden, ohne das das dazugehörige IP Connection Objekt verbunden ist.

BrickStepper.GetAPIVersion() → apiVersion
Ausgabe:
  • apiVersion – Typ: Byte[3]
    • 0: major – Typ: Byte, Wertebereich: [0 bis 255]
    • 1: minor – Typ: Byte, Wertebereich: [0 bis 255]
    • 2: revision – Typ: Byte, Wertebereich: [0 bis 255]

Gibt die Version der API Definition zurück, die diese API Bindings implementieren. Dies ist weder die Release-Version dieser API Bindings noch gibt es in irgendeiner Weise Auskunft über den oder das repräsentierte(n) Brick oder Bricklet.

BrickStepper.GetResponseExpected(functionId) → responseExpected
Eingabe:
  • functionId – Typ: Byte, Wertebereich: Siehe Konstanten
Ausgabe:
  • responseExpected – Typ: Boolean

Gibt das Response-Expected-Flag für die Funktion mit der angegebenen Funktions IDs zurück. Es ist true falls für die Funktion beim Aufruf eine Antwort erwartet wird, false andernfalls.

Für Getter-Funktionen ist diese Flag immer gesetzt und kann nicht entfernt werden, da diese Funktionen immer eine Antwort senden. Für Konfigurationsfunktionen für Callbacks ist es standardmäßig gesetzt, kann aber entfernt werden mittels SetResponseExpected(). Für Setter-Funktionen ist es standardmäßig nicht gesetzt, kann aber gesetzt werden.

Wenn das Response-Expected-Flag für eine Setter-Funktion gesetzt ist, können Timeouts und andere Fehlerfälle auch für Aufrufe dieser Setter-Funktion detektiert werden. Das Gerät sendet dann eine Antwort extra für diesen Zweck. Wenn das Flag für eine Setter-Funktion nicht gesetzt ist, dann wird keine Antwort vom Gerät gesendet und Fehler werden stillschweigend ignoriert, da sie nicht detektiert werden können.

Die folgenden Konstanten sind für diese Funktion verfügbar:

Für functionId:

  • BrickStepper.FUNCTION_SET_MAX_VELOCITY = 1
  • BrickStepper.FUNCTION_SET_SPEED_RAMPING = 4
  • BrickStepper.FUNCTION_FULL_BRAKE = 6
  • BrickStepper.FUNCTION_SET_CURRENT_POSITION = 7
  • BrickStepper.FUNCTION_SET_TARGET_POSITION = 9
  • BrickStepper.FUNCTION_SET_STEPS = 11
  • BrickStepper.FUNCTION_SET_STEP_MODE = 14
  • BrickStepper.FUNCTION_DRIVE_FORWARD = 16
  • BrickStepper.FUNCTION_DRIVE_BACKWARD = 17
  • BrickStepper.FUNCTION_STOP = 18
  • BrickStepper.FUNCTION_SET_MOTOR_CURRENT = 22
  • BrickStepper.FUNCTION_ENABLE = 24
  • BrickStepper.FUNCTION_DISABLE = 25
  • BrickStepper.FUNCTION_SET_DECAY = 27
  • BrickStepper.FUNCTION_SET_MINIMUM_VOLTAGE = 29
  • BrickStepper.FUNCTION_SET_SYNC_RECT = 33
  • BrickStepper.FUNCTION_SET_TIME_BASE = 35
  • BrickStepper.FUNCTION_SET_ALL_DATA_PERIOD = 38
  • BrickStepper.FUNCTION_SET_SPITFP_BAUDRATE_CONFIG = 231
  • BrickStepper.FUNCTION_SET_SPITFP_BAUDRATE = 234
  • BrickStepper.FUNCTION_ENABLE_STATUS_LED = 238
  • BrickStepper.FUNCTION_DISABLE_STATUS_LED = 239
  • BrickStepper.FUNCTION_RESET = 243
  • BrickStepper.FUNCTION_WRITE_BRICKLET_PLUGIN = 246
BrickStepper.SetResponseExpected(functionId, responseExpected)
Eingabe:
  • functionId – Typ: Byte, Wertebereich: Siehe Konstanten
  • responseExpected – Typ: Boolean

Ändert das Response-Expected-Flag für die Funktion mit der angegebenen Funktion IDs. Diese Flag kann nur für Setter-Funktionen (Standardwert: false) und Konfigurationsfunktionen für Callbacks (Standardwert: true) geändert werden. Für Getter-Funktionen ist das Flag immer gesetzt.

Wenn das Response-Expected-Flag für eine Setter-Funktion gesetzt ist, können Timeouts und andere Fehlerfälle auch für Aufrufe dieser Setter-Funktion detektiert werden. Das Gerät sendet dann eine Antwort extra für diesen Zweck. Wenn das Flag für eine Setter-Funktion nicht gesetzt ist, dann wird keine Antwort vom Gerät gesendet und Fehler werden stillschweigend ignoriert, da sie nicht detektiert werden können.

Die folgenden Konstanten sind für diese Funktion verfügbar:

Für functionId:

  • BrickStepper.FUNCTION_SET_MAX_VELOCITY = 1
  • BrickStepper.FUNCTION_SET_SPEED_RAMPING = 4
  • BrickStepper.FUNCTION_FULL_BRAKE = 6
  • BrickStepper.FUNCTION_SET_CURRENT_POSITION = 7
  • BrickStepper.FUNCTION_SET_TARGET_POSITION = 9
  • BrickStepper.FUNCTION_SET_STEPS = 11
  • BrickStepper.FUNCTION_SET_STEP_MODE = 14
  • BrickStepper.FUNCTION_DRIVE_FORWARD = 16
  • BrickStepper.FUNCTION_DRIVE_BACKWARD = 17
  • BrickStepper.FUNCTION_STOP = 18
  • BrickStepper.FUNCTION_SET_MOTOR_CURRENT = 22
  • BrickStepper.FUNCTION_ENABLE = 24
  • BrickStepper.FUNCTION_DISABLE = 25
  • BrickStepper.FUNCTION_SET_DECAY = 27
  • BrickStepper.FUNCTION_SET_MINIMUM_VOLTAGE = 29
  • BrickStepper.FUNCTION_SET_SYNC_RECT = 33
  • BrickStepper.FUNCTION_SET_TIME_BASE = 35
  • BrickStepper.FUNCTION_SET_ALL_DATA_PERIOD = 38
  • BrickStepper.FUNCTION_SET_SPITFP_BAUDRATE_CONFIG = 231
  • BrickStepper.FUNCTION_SET_SPITFP_BAUDRATE = 234
  • BrickStepper.FUNCTION_ENABLE_STATUS_LED = 238
  • BrickStepper.FUNCTION_DISABLE_STATUS_LED = 239
  • BrickStepper.FUNCTION_RESET = 243
  • BrickStepper.FUNCTION_WRITE_BRICKLET_PLUGIN = 246
BrickStepper.SetResponseExpectedAll(responseExpected)
Eingabe:
  • responseExpected – Typ: Boolean

Ändert das Response-Expected-Flag für alle Setter-Funktionen und Konfigurationsfunktionen für Callbacks diese Gerätes.

Interne Funktionen

Interne Funktionen werden für Wartungsaufgaben, wie zum Beispiel das Flashen einer neuen Firmware oder das Ändern der UID eines Bricklets, verwendet. Diese Aufgaben sollten mit Brick Viewer durchgeführt werden, anstelle die internen Funktionen direkt zu verwenden.

BrickStepper.GetProtocol1BrickletName(port) → protocolVersion, firmwareVersion, name
Eingabe:
  • port – Typ: Char, Wertebereich: ["a" bis "b"]
Ausgabe:
  • protocolVersion – Typ: Byte, Wertebereich: [0 bis 255]
  • firmwareVersion – Typ: Byte[3]
    • 0: major – Typ: Byte, Wertebereich: [0 bis 255]
    • 1: minor – Typ: Byte, Wertebereich: [0 bis 255]
    • 2: revision – Typ: Byte, Wertebereich: [0 bis 255]
  • name – Typ: String, Länge: bis zu 40

Gibt die Firmware und Protokoll Version und den Namen des Bricklets für einen gegebenen Port zurück.

Der einzige Zweck dieser Funktion ist es, automatischen Flashen von Bricklet v1.x.y Plugins zu ermöglichen.

BrickStepper.WriteBrickletPlugin(port, offset, chunk)
Eingabe:
  • port – Typ: Char, Wertebereich: ["a" bis "b"]
  • offset – Typ: Byte, Wertebereich: [0 bis 255]
  • chunk – Typ: Byte[32], Wertebereich: [0 bis 255]

Schreibt 32 Bytes Firmware auf das Bricklet, dass am gegebenen Port angeschlossen ist. Die Bytes werden an die Position offset * 32 geschrieben.

Diese Funktion wird vom Brick Viewer während des Flashens benutzt. In einem normalem Nutzerprogramm sollte diese Funktion nicht benötigt werden.

BrickStepper.ReadBrickletPlugin(port, offset) → chunk
Eingabe:
  • port – Typ: Char, Wertebereich: ["a" bis "b"]
  • offset – Typ: Byte, Wertebereich: [0 bis 255]
Ausgabe:
  • chunk – Typ: Byte[32], Wertebereich: [0 bis 255]

Liest 32 Bytes Firmware vom Bricklet, dass am gegebenen Port angeschlossen ist. Die Bytes werden ab der Position offset * 32 gelesen.

Diese Funktion wird vom Brick Viewer während des Flashens benutzt. In einem normalem Nutzerprogramm sollte diese Funktion nicht benötigt werden.

Konstanten

BrickStepper.DEVICE_IDENTIFIER

Diese Konstante wird verwendet um einen Stepper Brick zu identifizieren.

Die GetIdentity() Funktion und der IPConnection.EnumerateCallback Callback der IP Connection haben ein deviceIdentifier Parameter um den Typ des Bricks oder Bricklets anzugeben.

BrickStepper.DEVICE_DISPLAY_NAME

Diese Konstante stellt den Anzeigenamen eines Stepper Brick dar.