C/C++ for Microcontrollers - DC Bricklet 2.0

This is the description of the C/C++ for Microcontrollers API bindings for the DC Bricklet 2.0. General information and technical specifications for the DC Bricklet 2.0 are summarized in its hardware description.

An installation guide for the C/C++ for Microcontrollers API bindings is part of their general description.

Examples

The example code below is Public Domain (CC0 1.0).

Configuration

Download (example_configuration.c)

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
// This example is not self-contained.
// It requires usage of the example driver specific to your platform.
// See the HAL documentation.

#include "src/bindings/hal_common.h"
#include "src/bindings/bricklet_dc_v2.h"

void check(int rc, const char *msg);
void example_setup(TF_HAL *hal);
void example_loop(TF_HAL *hal);

static TF_DCV2 dc;

void example_setup(TF_HAL *hal) {
    // Create device object
    check(tf_dc_v2_create(&dc, NULL, hal), "create device object");

    check(tf_dc_v2_set_drive_mode(&dc,
                                  TF_DC_V2_DRIVE_MODE_DRIVE_COAST), "call set_drive_mode");
    check(tf_dc_v2_set_pwm_frequency(&dc,
                                     10000), "call set_pwm_frequency"); // Use PWM frequency of 10 kHz
    check(tf_dc_v2_set_motion(&dc, 4096,
                              16384), "call set_motion"); // Slow acceleration (12.5 %/s), fast decceleration (50 %/s) for stopping
    check(tf_dc_v2_set_velocity(&dc,
                                32767), "call set_velocity"); // Full speed forward (100 %)
    check(tf_dc_v2_set_enabled(&dc, true), "call set_enabled"); // Enable motor power
}

void example_loop(TF_HAL *hal) {
    // Poll for callbacks
    tf_hal_callback_tick(hal, 0);
}

Callback

Download (example_callback.c)

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
// This example is not self-contained.
// It requires usage of the example driver specific to your platform.
// See the HAL documentation.

#include "src/bindings/hal_common.h"
#include "src/bindings/bricklet_dc_v2.h"

void check(int rc, const char *msg);
void example_setup(TF_HAL *hal);
void example_loop(TF_HAL *hal);

// Use velocity reached callback to swing back and forth
// between full speed forward and full speed backward
static void velocity_reached_handler(TF_DCV2 *device, int16_t velocity, void *user_data) {
    (void)device; (void)user_data; // avoid unused parameter warning

    if(velocity == 32767) {
        tf_hal_printf("Velocity: Full speed forward, now turning backward\n");
        tf_dc_v2_set_velocity(device, -32767);
    } else if(velocity == -32767) {
        tf_hal_printf("Velocity: Full speed backward, now turning forward\n");
        tf_dc_v2_set_velocity(device, 32767);
    } else {
        tf_hal_printf("Error\n"); // Can only happen if another program sets velocity
    }
}

static TF_DCV2 dc;

void example_setup(TF_HAL *hal) {
    // Create device object
    check(tf_dc_v2_create(&dc, NULL, hal), "create device object");

    // The acceleration has to be smaller or equal to the maximum
    // acceleration of the DC motor, otherwise the velocity reached
    // callback will be called too early
    check(tf_dc_v2_set_motion(&dc, 4096,
                              16384), "call set_motion"); // Slow acceleration (12.5 %/s), fast decceleration (50 %/s) for stopping
    check(tf_dc_v2_set_velocity(&dc,
                                32767), "call set_velocity"); // Full speed forward (100 %)

    // Register velocity reached callback to function velocity_reached_handler
    tf_dc_v2_register_velocity_reached_callback(&dc,
                                                velocity_reached_handler,
                                                NULL);

    // Enable motor power
    check(tf_dc_v2_set_enabled(&dc, true), "call set_enabled");
}

void example_loop(TF_HAL *hal) {
    // Poll for callbacks
    tf_hal_callback_tick(hal, 0);
}

API

Most functions of the C/C++ bindings for microcontrollers return an error code (e_code).

Possible error codes are:

  • TF_E_OK = 0
  • TF_E_TIMEOUT = -1
  • TF_E_INVALID_PARAMETER = -2
  • TF_E_NOT_SUPPORTED = -3
  • TF_E_UNKNOWN_ERROR_CODE = -4
  • TF_E_STREAM_OUT_OF_SYNC = -5
  • TF_E_INVALID_CHAR_IN_UID = -6
  • TF_E_UID_TOO_LONG = -7
  • TF_E_UID_OVERFLOW = -8
  • TF_E_TOO_MANY_DEVICES = -9
  • TF_E_DEVICE_NOT_FOUND = -10
  • TF_E_WRONG_DEVICE_TYPE = -11
  • TF_E_LOCKED = -12
  • TF_E_PORT_NOT_FOUND = -13

(as defined in errors.h) as well as the errors returned from the hardware abstraction layer (HAL) that is used.

Use :cpp:func`tf_hal_strerror` (defined in the HAL's header file) to get an error string for an error code.

Data returned from the device, when a getter is called, is handled via output parameters. These parameters are labeled with the ret_ prefix. The bindings will not write to an output parameter if NULL or nullptr is passed. This can be used to ignore outputs that you are not interested in.

None of the functions listed below are thread-safe. See the API bindings description for details.

Basic Functions

int tf_dc_v2_create(TF_DCV2 *dc_v2, const char *uid_or_port_name, TF_HAL *hal)
Parameters:
  • dc_v2 – Type: TF_DCV2 *
  • uid – Type: const char *
  • hal – Type: TF_HAL *
Returns:
  • e_code – Type: int

Creates the device object dc_v2 with the optional unique device ID or port name uid_or_port_name and adds it to the HAL hal:

TF_DCV2 dc_v2;
tf_dc_v2_create(&dc_v2, NULL, &hal);

Normally uid_or_port_name can stay NULL. For more details about this see section UID or Port Name.

int tf_dc_v2_destroy(TF_DCV2 *dc_v2)
Parameters:
  • dc_v2 – Type: TF_DCV2 *
Returns:
  • e_code – Type: int

Removes the device object dc_v2 from its HAL and destroys it. The device object cannot be used anymore afterwards.

int tf_dc_v2_set_enabled(TF_DCV2 *dc_v2, bool enabled)
Parameters:
  • dc_v2 – Type: TF_DCV2 *
  • enabled – Type: bool
Returns:
  • e_code – Type: int

Enables/Disables the driver chip. The driver parameters can be configured (velocity, acceleration, etc) before it is enabled.

int tf_dc_v2_get_enabled(TF_DCV2 *dc_v2, bool *ret_enabled)
Parameters:
  • dc_v2 – Type: TF_DCV2 *
Output Parameters:
  • ret_enabled – Type: bool, Default: false
Returns:
  • e_code – Type: int

Returns true if the driver chip is enabled, false otherwise.

int tf_dc_v2_set_velocity(TF_DCV2 *dc_v2, int16_t velocity)
Parameters:
  • dc_v2 – Type: TF_DCV2 *
  • velocity – Type: int16_t, Unit: 100/32767 %, Range: [-215 + 1 to 215 - 1], Default: 0
Returns:
  • e_code – Type: int

Sets the velocity of the motor. Whereas -32767 is full speed backward, 0 is stop and 32767 is full speed forward. Depending on the acceleration (see tf_dc_v2_set_motion()), the motor is not immediately brought to the velocity but smoothly accelerated.

The velocity describes the duty cycle of the PWM with which the motor is controlled, e.g. a velocity of 3277 sets a PWM with a 10% duty cycle. You can not only control the duty cycle of the PWM but also the frequency, see tf_dc_v2_set_pwm_frequency().

int tf_dc_v2_get_velocity(TF_DCV2 *dc_v2, int16_t *ret_velocity)
Parameters:
  • dc_v2 – Type: TF_DCV2 *
Output Parameters:
  • ret_velocity – Type: int16_t, Unit: 100/32767 %, Range: [-215 + 1 to 215 - 1], Default: 0
Returns:
  • e_code – Type: int

Returns the velocity as set by tf_dc_v2_set_velocity().

int tf_dc_v2_get_current_velocity(TF_DCV2 *dc_v2, int16_t *ret_velocity)
Parameters:
  • dc_v2 – Type: TF_DCV2 *
Output Parameters:
  • ret_velocity – Type: int16_t, Unit: 100/32767 %, Range: [-215 + 1 to 215 - 1], Default: 0
Returns:
  • e_code – Type: int

Returns the current velocity of the motor. This value is different from tf_dc_v2_get_velocity() whenever the motor is currently accelerating to a goal set by tf_dc_v2_set_velocity().

int tf_dc_v2_set_motion(TF_DCV2 *dc_v2, uint16_t acceleration, uint16_t deceleration)
Parameters:
  • dc_v2 – Type: TF_DCV2 *
  • acceleration – Type: uint16_t, Unit: 100/32767 %/s, Range: [0 to 216 - 1], Default: 10000
  • deceleration – Type: uint16_t, Unit: 100/32767 %/s, Range: [0 to 216 - 1], Default: 10000
Returns:
  • e_code – Type: int

Sets the acceleration and deceleration of the motor. It is given in velocity/s. An acceleration of 10000 means, that every second the velocity is increased by 10000 (or about 30% duty cycle).

For example: If the current velocity is 0 and you want to accelerate to a velocity of 16000 (about 50% duty cycle) in 10 seconds, you should set an acceleration of 1600.

If acceleration and deceleration is set to 0, there is no speed ramping, i.e. a new velocity is immediately given to the motor.

int tf_dc_v2_get_motion(TF_DCV2 *dc_v2, uint16_t *ret_acceleration, uint16_t *ret_deceleration)
Parameters:
  • dc_v2 – Type: TF_DCV2 *
Output Parameters:
  • ret_acceleration – Type: uint16_t, Unit: 100/32767 %/s, Range: [0 to 216 - 1], Default: 10000
  • ret_deceleration – Type: uint16_t, Unit: 100/32767 %/s, Range: [0 to 216 - 1], Default: 10000
Returns:
  • e_code – Type: int

Returns the acceleration/deceleration as set by tf_dc_v2_set_motion().

int tf_dc_v2_full_brake(TF_DCV2 *dc_v2)
Parameters:
  • dc_v2 – Type: TF_DCV2 *
Returns:
  • e_code – Type: int

Executes an active full brake.

Warning

This function is for emergency purposes, where an immediate brake is necessary. Depending on the current velocity and the strength of the motor, a full brake can be quite violent.

Call tf_dc_v2_set_velocity() with 0 if you just want to stop the motor.

int tf_dc_v2_get_pwm_frequency(TF_DCV2 *dc_v2, uint16_t *ret_frequency)
Parameters:
  • dc_v2 – Type: TF_DCV2 *
Output Parameters:
  • ret_frequency – Type: uint16_t, Unit: 1 Hz, Range: [1 to 20000], Default: 15000
Returns:
  • e_code – Type: int

Returns the PWM frequency as set by tf_dc_v2_set_pwm_frequency().

int tf_dc_v2_get_power_statistics(TF_DCV2 *dc_v2, uint16_t *ret_voltage, uint16_t *ret_current)
Parameters:
  • dc_v2 – Type: TF_DCV2 *
Output Parameters:
  • ret_voltage – Type: uint16_t, Unit: 1 mV, Range: [0 to 216 - 1]
  • ret_current – Type: uint16_t, Unit: 1 mA, Range: [0 to 216 - 1]
Returns:
  • e_code – Type: int

Returns input voltage and current usage of the driver.

Advanced Functions

int tf_dc_v2_set_drive_mode(TF_DCV2 *dc_v2, uint8_t mode)
Parameters:
  • dc_v2 – Type: TF_DCV2 *
  • mode – Type: uint8_t, Range: See constants, Default: 0
Returns:
  • e_code – Type: int

Sets the drive mode. Possible modes are:

  • 0 = Drive/Brake
  • 1 = Drive/Coast

These modes are different kinds of motor controls.

In Drive/Brake mode, the motor is always either driving or braking. There is no freewheeling. Advantages are: A more linear correlation between PWM and velocity, more exact accelerations and the possibility to drive with slower velocities.

In Drive/Coast mode, the motor is always either driving or freewheeling. Advantages are: Less current consumption and less demands on the motor and driver chip.

The following constants are available for this function:

For mode:

  • TF_DC_V2_DRIVE_MODE_DRIVE_BRAKE = 0
  • TF_DC_V2_DRIVE_MODE_DRIVE_COAST = 1
int tf_dc_v2_get_drive_mode(TF_DCV2 *dc_v2, uint8_t *ret_mode)
Parameters:
  • dc_v2 – Type: TF_DCV2 *
Output Parameters:
  • ret_mode – Type: uint8_t, Range: See constants, Default: 0
Returns:
  • e_code – Type: int

Returns the drive mode, as set by tf_dc_v2_set_drive_mode().

The following constants are available for this function:

For ret_mode:

  • TF_DC_V2_DRIVE_MODE_DRIVE_BRAKE = 0
  • TF_DC_V2_DRIVE_MODE_DRIVE_COAST = 1
int tf_dc_v2_set_pwm_frequency(TF_DCV2 *dc_v2, uint16_t frequency)
Parameters:
  • dc_v2 – Type: TF_DCV2 *
  • frequency – Type: uint16_t, Unit: 1 Hz, Range: [1 to 20000], Default: 15000
Returns:
  • e_code – Type: int

Sets the frequency of the PWM with which the motor is driven. Often a high frequency is less noisy and the motor runs smoother. However, with a low frequency there are less switches and therefore fewer switching losses. Also with most motors lower frequencies enable higher torque.

If you have no idea what all this means, just ignore this function and use the default frequency, it will very likely work fine.

int tf_dc_v2_set_error_led_config(TF_DCV2 *dc_v2, uint8_t config)
Parameters:
  • dc_v2 – Type: TF_DCV2 *
  • config – Type: uint8_t, Range: See constants, Default: 3
Returns:
  • e_code – Type: int

Configures the error LED to be either turned off, turned on, blink in heartbeat mode or show an error.

If the LED is configured to show errors it has three different states:

  • Off: No error present.
  • 1s interval blinking: Input voltage too low (below 6V).
  • 250ms interval blinking: Overtemperature or overcurrent.

The following constants are available for this function:

For config:

  • TF_DC_V2_ERROR_LED_CONFIG_OFF = 0
  • TF_DC_V2_ERROR_LED_CONFIG_ON = 1
  • TF_DC_V2_ERROR_LED_CONFIG_SHOW_HEARTBEAT = 2
  • TF_DC_V2_ERROR_LED_CONFIG_SHOW_ERROR = 3
int tf_dc_v2_get_error_led_config(TF_DCV2 *dc_v2, uint8_t *ret_config)
Parameters:
  • dc_v2 – Type: TF_DCV2 *
Output Parameters:
  • ret_config – Type: uint8_t, Range: See constants, Default: 3
Returns:
  • e_code – Type: int

Returns the LED configuration as set by tf_dc_v2_set_error_led_config()

The following constants are available for this function:

For ret_config:

  • TF_DC_V2_ERROR_LED_CONFIG_OFF = 0
  • TF_DC_V2_ERROR_LED_CONFIG_ON = 1
  • TF_DC_V2_ERROR_LED_CONFIG_SHOW_HEARTBEAT = 2
  • TF_DC_V2_ERROR_LED_CONFIG_SHOW_ERROR = 3
int tf_dc_v2_get_spitfp_error_count(TF_DCV2 *dc_v2, uint32_t *ret_error_count_ack_checksum, uint32_t *ret_error_count_message_checksum, uint32_t *ret_error_count_frame, uint32_t *ret_error_count_overflow)
Parameters:
  • dc_v2 – Type: TF_DCV2 *
Output Parameters:
  • ret_error_count_ack_checksum – Type: uint32_t, Range: [0 to 232 - 1]
  • ret_error_count_message_checksum – Type: uint32_t, Range: [0 to 232 - 1]
  • ret_error_count_frame – Type: uint32_t, Range: [0 to 232 - 1]
  • ret_error_count_overflow – Type: uint32_t, Range: [0 to 232 - 1]
Returns:
  • e_code – Type: int

Returns the error count for the communication between Brick and Bricklet.

The errors are divided into

  • ACK checksum errors,
  • message checksum errors,
  • framing errors and
  • overflow errors.

The errors counts are for errors that occur on the Bricklet side. All Bricks have a similar function that returns the errors on the Brick side.

int tf_dc_v2_set_status_led_config(TF_DCV2 *dc_v2, uint8_t config)
Parameters:
  • dc_v2 – Type: TF_DCV2 *
  • config – Type: uint8_t, Range: See constants, Default: 3
Returns:
  • e_code – Type: int

Sets the status LED configuration. By default the LED shows communication traffic between Brick and Bricklet, it flickers once for every 10 received data packets.

You can also turn the LED permanently on/off or show a heartbeat.

If the Bricklet is in bootloader mode, the LED is will show heartbeat by default.

The following constants are available for this function:

For config:

  • TF_DC_V2_STATUS_LED_CONFIG_OFF = 0
  • TF_DC_V2_STATUS_LED_CONFIG_ON = 1
  • TF_DC_V2_STATUS_LED_CONFIG_SHOW_HEARTBEAT = 2
  • TF_DC_V2_STATUS_LED_CONFIG_SHOW_STATUS = 3
int tf_dc_v2_get_status_led_config(TF_DCV2 *dc_v2, uint8_t *ret_config)
Parameters:
  • dc_v2 – Type: TF_DCV2 *
Output Parameters:
  • ret_config – Type: uint8_t, Range: See constants, Default: 3
Returns:
  • e_code – Type: int

Returns the configuration as set by tf_dc_v2_set_status_led_config()

The following constants are available for this function:

For ret_config:

  • TF_DC_V2_STATUS_LED_CONFIG_OFF = 0
  • TF_DC_V2_STATUS_LED_CONFIG_ON = 1
  • TF_DC_V2_STATUS_LED_CONFIG_SHOW_HEARTBEAT = 2
  • TF_DC_V2_STATUS_LED_CONFIG_SHOW_STATUS = 3
int tf_dc_v2_get_chip_temperature(TF_DCV2 *dc_v2, int16_t *ret_temperature)
Parameters:
  • dc_v2 – Type: TF_DCV2 *
Output Parameters:
  • ret_temperature – Type: int16_t, Unit: 1 °C, Range: [-215 to 215 - 1]
Returns:
  • e_code – Type: int

Returns the temperature as measured inside the microcontroller. The value returned is not the ambient temperature!

The temperature is only proportional to the real temperature and it has bad accuracy. Practically it is only useful as an indicator for temperature changes.

int tf_dc_v2_reset(TF_DCV2 *dc_v2)
Parameters:
  • dc_v2 – Type: TF_DCV2 *
Returns:
  • e_code – Type: int

Calling this function will reset the Bricklet. All configurations will be lost.

After a reset you have to create new device objects, calling functions on the existing ones will result in undefined behavior!

int tf_dc_v2_get_identity(TF_DCV2 *dc_v2, char ret_uid[8], char ret_connected_uid[8], char *ret_position, uint8_t ret_hardware_version[3], uint8_t ret_firmware_version[3], uint16_t *ret_device_identifier)
Parameters:
  • dc_v2 – Type: TF_DCV2 *
Output Parameters:
  • ret_uid – Type: char[8]
  • ret_connected_uid – Type: char[8]
  • ret_position – Type: char, Range: ['a' to 'h', 'z']
  • ret_hardware_version – Type: uint8_t[3]
    • 0: major – Type: uint8_t, Range: [0 to 255]
    • 1: minor – Type: uint8_t, Range: [0 to 255]
    • 2: revision – Type: uint8_t, Range: [0 to 255]
  • ret_firmware_version – Type: uint8_t[3]
    • 0: major – Type: uint8_t, Range: [0 to 255]
    • 1: minor – Type: uint8_t, Range: [0 to 255]
    • 2: revision – Type: uint8_t, Range: [0 to 255]
  • ret_device_identifier – Type: uint16_t, Range: [0 to 216 - 1]
Returns:
  • e_code – Type: int

Returns the UID, the UID where the Bricklet is connected to, the position, the hardware and firmware version as well as the device identifier.

The position can be 'a', 'b', 'c', 'd', 'e', 'f', 'g' or 'h' (Bricklet Port). A Bricklet connected to an Isolator Bricklet is always at position 'z'.

The device identifier numbers can be found here. There is also a constant for the device identifier of this Bricklet.

Callback Configuration Functions

int tf_dc_v2_set_emergency_shutdown_callback_configuration(TF_DCV2 *dc_v2, bool enabled)
Parameters:
  • dc_v2 – Type: TF_DCV2 *
  • enabled – Type: bool, Default: false
Returns:
  • e_code – Type: int

Enable/Disable Emergency Shutdown callback.

int tf_dc_v2_get_emergency_shutdown_callback_configuration(TF_DCV2 *dc_v2, bool *ret_enabled)
Parameters:
  • dc_v2 – Type: TF_DCV2 *
Output Parameters:
  • ret_enabled – Type: bool, Default: true
Returns:
  • e_code – Type: int

Returns the callback configuration as set by tf_dc_v2_set_emergency_shutdown_callback_configuration().

int tf_dc_v2_set_velocity_reached_callback_configuration(TF_DCV2 *dc_v2, bool enabled)
Parameters:
  • dc_v2 – Type: TF_DCV2 *
  • enabled – Type: bool, Default: false
Returns:
  • e_code – Type: int

Enable/Disable Velocity Reached callback.

int tf_dc_v2_get_velocity_reached_callback_configuration(TF_DCV2 *dc_v2, bool *ret_enabled)
Parameters:
  • dc_v2 – Type: TF_DCV2 *
Output Parameters:
  • ret_enabled – Type: bool, Default: false
Returns:
  • e_code – Type: int

Returns the callback configuration as set by tf_dc_v2_set_velocity_reached_callback_configuration().

int tf_dc_v2_set_current_velocity_callback_configuration(TF_DCV2 *dc_v2, uint32_t period, bool value_has_to_change)
Parameters:
  • dc_v2 – Type: TF_DCV2 *
  • period – Type: uint32_t, Unit: 1 ms, Range: [0 to 232 - 1], Default: 0
  • value_has_to_change – Type: bool, Default: false
Returns:
  • e_code – Type: int

The period is the period with which the Current Velocity callback is triggered periodically. A value of 0 turns the callback off.

If the value has to change-parameter is set to true, the callback is only triggered after the value has changed. If the value didn't change within the period, the callback is triggered immediately on change.

If it is set to false, the callback is continuously triggered with the period, independent of the value.

int tf_dc_v2_get_current_velocity_callback_configuration(TF_DCV2 *dc_v2, uint32_t *ret_period, bool *ret_value_has_to_change)
Parameters:
  • dc_v2 – Type: TF_DCV2 *
Output Parameters:
  • ret_period – Type: uint32_t, Unit: 1 ms, Range: [0 to 232 - 1], Default: 0
  • ret_value_has_to_change – Type: bool, Default: false
Returns:
  • e_code – Type: int

Returns the callback configuration as set by tf_dc_v2_set_current_velocity_callback_configuration().

Callbacks

Callbacks can be registered to receive time critical or recurring data from the device. The registration is done with the corresponding tf_dc_v2_register_*_callback function. The user_data passed to the registration function as well as the device that triggered the callback are passed to the registered callback handler.

Only one handler can be registered to a callback at the same time. To deregister a callback, call the tf_dc_v2_register_*_callback function with NULL as handler.

Note

Using callbacks for recurring events is preferred compared to using getters. Polling for a callback requires writing one byte only. See here Optimizing Performance.

Warning

Calling bindings function from inside a callback handler is not allowed. See here Thread safety.

int tf_dc_v2_register_emergency_shutdown_callback(TF_DCV2 *dc_v2, TF_DCV2_EmergencyShutdownHandler handler, void *user_data)
void handler(TF_DCV2 *dc_v2, void *user_data)
Callback Parameters:
  • dc_v2 – Type: TF_DCV2 *
  • user_data – Type: void *

This callback is triggered if either the current consumption is too high (above 5A) or the temperature of the driver chip is too high (above 175°C). These two possibilities are essentially the same, since the temperature will reach this threshold immediately if the motor consumes too much current. In case of a voltage below 3.3V (external or stack) this callback is triggered as well.

If this callback is triggered, the driver chip gets disabled at the same time. That means, tf_dc_v2_set_enabled() has to be called to drive the motor again.

Note

This callback only works in Drive/Brake mode (see tf_dc_v2_set_drive_mode()). In Drive/Coast mode it is unfortunately impossible to reliably read the overcurrent/overtemperature signal from the driver chip.

int tf_dc_v2_register_velocity_reached_callback(TF_DCV2 *dc_v2, TF_DCV2_VelocityReachedHandler handler, void *user_data)
void handler(TF_DCV2 *dc_v2, int16_t velocity, void *user_data)
Callback Parameters:
  • dc_v2 – Type: TF_DCV2 *
  • velocity – Type: int16_t, Unit: 100/32767 %, Range: [-215 + 1 to 215 - 1]
  • user_data – Type: void *

This callback is triggered whenever a set velocity is reached. For example: If a velocity of 0 is present, acceleration is set to 5000 and velocity to 10000, the Velocity Reached callback will be triggered after about 2 seconds, when the set velocity is actually reached.

Note

Since we can't get any feedback from the DC motor, this only works if the acceleration (see tf_dc_v2_set_motion()) is set smaller or equal to the maximum acceleration of the motor. Otherwise the motor will lag behind the control value and the callback will be triggered too early.

int tf_dc_v2_register_current_velocity_callback(TF_DCV2 *dc_v2, TF_DCV2_CurrentVelocityHandler handler, void *user_data)
void handler(TF_DCV2 *dc_v2, int16_t velocity, void *user_data)
Callback Parameters:
  • dc_v2 – Type: TF_DCV2 *
  • velocity – Type: int16_t, Unit: 100/32767 %, Range: [-215 + 1 to 215 - 1]
  • user_data – Type: void *

This callback is triggered with the period that is set by tf_dc_v2_set_current_velocity_callback_configuration(). The parameter is the current velocity used by the motor.

The Current Velocity callback is only triggered after the set period if there is a change in the velocity.

Virtual Functions

Virtual functions don't communicate with the device itself, but operate only on the API bindings device object.

int tf_dc_v2_get_response_expected(TF_DCV2 *dc_v2, uint8_t function_id, bool *ret_response_expected)
Parameters:
  • dc_v2 – Type: TF_DCV2 *
  • function_id – Type: uint8_t, Range: See constants
Output Parameters:
  • ret_response_expected – Type: bool
Returns:
  • e_code – Type: int

Returns the response expected flag for the function specified by the function ID parameter. It is true if the function is expected to send a response, false otherwise.

For getter functions this is enabled by default and cannot be disabled, because those functions will always send a response. For callback configuration functions it is enabled by default too, but can be disabled by tf_dc_v2_set_response_expected(). For setter functions it is disabled by default and can be enabled.

Enabling the response expected flag for a setter function allows to detect timeouts and other error conditions calls of this setter as well. The device will then send a response for this purpose. If this flag is disabled for a setter function then no response is sent and errors are silently ignored, because they cannot be detected.

The following constants are available for this function:

For function_id:

  • TF_DC_V2_FUNCTION_SET_ENABLED = 1
  • TF_DC_V2_FUNCTION_SET_VELOCITY = 3
  • TF_DC_V2_FUNCTION_SET_MOTION = 6
  • TF_DC_V2_FUNCTION_FULL_BRAKE = 8
  • TF_DC_V2_FUNCTION_SET_DRIVE_MODE = 9
  • TF_DC_V2_FUNCTION_SET_PWM_FREQUENCY = 11
  • TF_DC_V2_FUNCTION_SET_ERROR_LED_CONFIG = 14
  • TF_DC_V2_FUNCTION_SET_EMERGENCY_SHUTDOWN_CALLBACK_CONFIGURATION = 16
  • TF_DC_V2_FUNCTION_SET_VELOCITY_REACHED_CALLBACK_CONFIGURATION = 18
  • TF_DC_V2_FUNCTION_SET_CURRENT_VELOCITY_CALLBACK_CONFIGURATION = 20
  • TF_DC_V2_FUNCTION_SET_WRITE_FIRMWARE_POINTER = 237
  • TF_DC_V2_FUNCTION_SET_STATUS_LED_CONFIG = 239
  • TF_DC_V2_FUNCTION_RESET = 243
  • TF_DC_V2_FUNCTION_WRITE_UID = 248
int tf_dc_v2_set_response_expected(TF_DCV2 *dc_v2, uint8_t function_id, bool response_expected)
Parameters:
  • dc_v2 – Type: TF_DCV2 *
  • function_id – Type: uint8_t, Range: See constants
  • response_expected – Type: bool
Returns:
  • e_code – Type: int

Changes the response expected flag of the function specified by the function ID parameter. This flag can only be changed for setter (default value: false) and callback configuration functions (default value: true). For getter functions it is always enabled.

Enabling the response expected flag for a setter function allows to detect timeouts and other error conditions calls of this setter as well. The device will then send a response for this purpose. If this flag is disabled for a setter function then no response is sent and errors are silently ignored, because they cannot be detected.

The following constants are available for this function:

For function_id:

  • TF_DC_V2_FUNCTION_SET_ENABLED = 1
  • TF_DC_V2_FUNCTION_SET_VELOCITY = 3
  • TF_DC_V2_FUNCTION_SET_MOTION = 6
  • TF_DC_V2_FUNCTION_FULL_BRAKE = 8
  • TF_DC_V2_FUNCTION_SET_DRIVE_MODE = 9
  • TF_DC_V2_FUNCTION_SET_PWM_FREQUENCY = 11
  • TF_DC_V2_FUNCTION_SET_ERROR_LED_CONFIG = 14
  • TF_DC_V2_FUNCTION_SET_EMERGENCY_SHUTDOWN_CALLBACK_CONFIGURATION = 16
  • TF_DC_V2_FUNCTION_SET_VELOCITY_REACHED_CALLBACK_CONFIGURATION = 18
  • TF_DC_V2_FUNCTION_SET_CURRENT_VELOCITY_CALLBACK_CONFIGURATION = 20
  • TF_DC_V2_FUNCTION_SET_WRITE_FIRMWARE_POINTER = 237
  • TF_DC_V2_FUNCTION_SET_STATUS_LED_CONFIG = 239
  • TF_DC_V2_FUNCTION_RESET = 243
  • TF_DC_V2_FUNCTION_WRITE_UID = 248
int tf_dc_v2_set_response_expected_all(TF_DCV2 *dc_v2, bool response_expected)
Parameters:
  • dc_v2 – Type: TF_DCV2 *
  • response_expected – Type: bool
Returns:
  • e_code – Type: int

Changes the response expected flag for all setter and callback configuration functions of this device at once.

Internal Functions

Internal functions are used for maintenance tasks such as flashing a new firmware of changing the UID of a Bricklet. These task should be performed using Brick Viewer instead of using the internal functions directly.

int tf_dc_v2_set_bootloader_mode(TF_DCV2 *dc_v2, uint8_t mode, uint8_t *ret_status)
Parameters:
  • dc_v2 – Type: TF_DCV2 *
  • mode – Type: uint8_t, Range: See constants
Output Parameters:
  • ret_status – Type: uint8_t, Range: See constants
Returns:
  • e_code – Type: int

Sets the bootloader mode and returns the status after the requested mode change was instigated.

You can change from bootloader mode to firmware mode and vice versa. A change from bootloader mode to firmware mode will only take place if the entry function, device identifier and CRC are present and correct.

This function is used by Brick Viewer during flashing. It should not be necessary to call it in a normal user program.

The following constants are available for this function:

For mode:

  • TF_DC_V2_BOOTLOADER_MODE_BOOTLOADER = 0
  • TF_DC_V2_BOOTLOADER_MODE_FIRMWARE = 1
  • TF_DC_V2_BOOTLOADER_MODE_BOOTLOADER_WAIT_FOR_REBOOT = 2
  • TF_DC_V2_BOOTLOADER_MODE_FIRMWARE_WAIT_FOR_REBOOT = 3
  • TF_DC_V2_BOOTLOADER_MODE_FIRMWARE_WAIT_FOR_ERASE_AND_REBOOT = 4

For ret_status:

  • TF_DC_V2_BOOTLOADER_STATUS_OK = 0
  • TF_DC_V2_BOOTLOADER_STATUS_INVALID_MODE = 1
  • TF_DC_V2_BOOTLOADER_STATUS_NO_CHANGE = 2
  • TF_DC_V2_BOOTLOADER_STATUS_ENTRY_FUNCTION_NOT_PRESENT = 3
  • TF_DC_V2_BOOTLOADER_STATUS_DEVICE_IDENTIFIER_INCORRECT = 4
  • TF_DC_V2_BOOTLOADER_STATUS_CRC_MISMATCH = 5
int tf_dc_v2_get_bootloader_mode(TF_DCV2 *dc_v2, uint8_t *ret_mode)
Parameters:
  • dc_v2 – Type: TF_DCV2 *
Output Parameters:
  • ret_mode – Type: uint8_t, Range: See constants
Returns:
  • e_code – Type: int

Returns the current bootloader mode, see tf_dc_v2_set_bootloader_mode().

The following constants are available for this function:

For ret_mode:

  • TF_DC_V2_BOOTLOADER_MODE_BOOTLOADER = 0
  • TF_DC_V2_BOOTLOADER_MODE_FIRMWARE = 1
  • TF_DC_V2_BOOTLOADER_MODE_BOOTLOADER_WAIT_FOR_REBOOT = 2
  • TF_DC_V2_BOOTLOADER_MODE_FIRMWARE_WAIT_FOR_REBOOT = 3
  • TF_DC_V2_BOOTLOADER_MODE_FIRMWARE_WAIT_FOR_ERASE_AND_REBOOT = 4
int tf_dc_v2_set_write_firmware_pointer(TF_DCV2 *dc_v2, uint32_t pointer)
Parameters:
  • dc_v2 – Type: TF_DCV2 *
  • pointer – Type: uint32_t, Unit: 1 B, Range: [0 to 232 - 1]
Returns:
  • e_code – Type: int

Sets the firmware pointer for tf_dc_v2_write_firmware(). The pointer has to be increased by chunks of size 64. The data is written to flash every 4 chunks (which equals to one page of size 256).

This function is used by Brick Viewer during flashing. It should not be necessary to call it in a normal user program.

int tf_dc_v2_write_firmware(TF_DCV2 *dc_v2, const uint8_t data[64], uint8_t *ret_status)
Parameters:
  • dc_v2 – Type: TF_DCV2 *
  • data – Type: const uint8_t[64], Range: [0 to 255]
Output Parameters:
  • ret_status – Type: uint8_t, Range: [0 to 255]
Returns:
  • e_code – Type: int

Writes 64 Bytes of firmware at the position as written by tf_dc_v2_set_write_firmware_pointer() before. The firmware is written to flash every 4 chunks.

You can only write firmware in bootloader mode.

This function is used by Brick Viewer during flashing. It should not be necessary to call it in a normal user program.

int tf_dc_v2_write_uid(TF_DCV2 *dc_v2, uint32_t uid)
Parameters:
  • dc_v2 – Type: TF_DCV2 *
  • uid – Type: uint32_t, Range: [0 to 232 - 1]
Returns:
  • e_code – Type: int

Writes a new UID into flash. If you want to set a new UID you have to decode the Base58 encoded UID string into an integer first.

We recommend that you use Brick Viewer to change the UID.

int tf_dc_v2_read_uid(TF_DCV2 *dc_v2, uint32_t *ret_uid)
Parameters:
  • dc_v2 – Type: TF_DCV2 *
Output Parameters:
  • ret_uid – Type: uint32_t, Range: [0 to 232 - 1]
Returns:
  • e_code – Type: int

Returns the current UID as an integer. Encode as Base58 to get the usual string version.

Constants

TF_DC_V2_DEVICE_IDENTIFIER

This constant is used to identify a DC Bricklet 2.0.

The functions tf_dc_v2_get_identity() and tf_hal_get_device_info() have a device_identifier output parameter to specify the Brick's or Bricklet's type.

TF_DC_V2_DEVICE_DISPLAY_NAME

This constant represents the human readable name of a DC Bricklet 2.0.