This is the description of the C# API bindings for the IMU Bricklet 3.0. General information and technical specifications for the IMU Bricklet 3.0 are summarized in its hardware description.
An installation guide for the C# API bindings is part of their general description.
The example code below is Public Domain (CC0 1.0).
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 | using System;
using Tinkerforge;
class Example
{
private static string HOST = "localhost";
private static int PORT = 4223;
private static string UID = "XYZ"; // Change XYZ to the UID of your IMU Bricklet 3.0
static void Main()
{
IPConnection ipcon = new IPConnection(); // Create IP connection
BrickletIMUV3 imu = new BrickletIMUV3(UID, ipcon); // Create device object
ipcon.Connect(HOST, PORT); // Connect to brickd
// Don't use device before ipcon is connected
// Get current quaternion
short w, x, y, z;
imu.GetQuaternion(out w, out x, out y, out z);
Console.WriteLine("Quaternion [W]: " + w/16383.0);
Console.WriteLine("Quaternion [X]: " + x/16383.0);
Console.WriteLine("Quaternion [Y]: " + y/16383.0);
Console.WriteLine("Quaternion [Z]: " + z/16383.0);
Console.WriteLine("Press enter to exit");
Console.ReadLine();
ipcon.Disconnect();
}
}
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 | using System;
using Tinkerforge;
class Example
{
private static string HOST = "localhost";
private static int PORT = 4223;
private static string UID = "XYZ"; // Change XYZ to the UID of your IMU Bricklet 3.0
// Callback function for quaternion callback
static void QuaternionCB(BrickletIMUV3 sender, short w, short x, short y, short z)
{
Console.WriteLine("Quaternion [W]: " + w/16383.0);
Console.WriteLine("Quaternion [X]: " + x/16383.0);
Console.WriteLine("Quaternion [Y]: " + y/16383.0);
Console.WriteLine("Quaternion [Z]: " + z/16383.0);
Console.WriteLine("");
}
static void Main()
{
IPConnection ipcon = new IPConnection(); // Create IP connection
BrickletIMUV3 imu = new BrickletIMUV3(UID, ipcon); // Create device object
ipcon.Connect(HOST, PORT); // Connect to brickd
// Don't use device before ipcon is connected
// Register quaternion callback to function QuaternionCB
imu.QuaternionCallback += QuaternionCB;
// Set period for quaternion callback to 0.1s (100ms)
imu.SetQuaternionCallbackConfiguration(100, false);
Console.WriteLine("Press enter to exit");
Console.ReadLine();
ipcon.Disconnect();
}
}
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 | using System;
using Tinkerforge;
class Example
{
private static string HOST = "localhost";
private static int PORT = 4223;
private static string UID = "XYZ"; // Change XYZ to the UID of your IMU Bricklet 3.0
// Callback function for all data callback
static void AllDataCB(BrickletIMUV3 sender, short[] acceleration,
short[] magneticField, short[] angularVelocity,
short[] eulerAngle, short[] quaternion,
short[] linearAcceleration, short[] gravityVector,
short temperature, byte calibrationStatus)
{
Console.WriteLine("Acceleration [X]: " + acceleration[0]/100.0 + " m/s²");
Console.WriteLine("Acceleration [Y]: " + acceleration[1]/100.0 + " m/s²");
Console.WriteLine("Acceleration [Z]: " + acceleration[2]/100.0 + " m/s²");
Console.WriteLine("Magnetic Field [X]: " + magneticField[0]/16.0 + " µT");
Console.WriteLine("Magnetic Field [Y]: " + magneticField[1]/16.0 + " µT");
Console.WriteLine("Magnetic Field [Z]: " + magneticField[2]/16.0 + " µT");
Console.WriteLine("Angular Velocity [X]: " + angularVelocity[0]/16.0 + " °/s");
Console.WriteLine("Angular Velocity [Y]: " + angularVelocity[1]/16.0 + " °/s");
Console.WriteLine("Angular Velocity [Z]: " + angularVelocity[2]/16.0 + " °/s");
Console.WriteLine("Euler Angle [Heading]: " + eulerAngle[0]/16.0 + " °");
Console.WriteLine("Euler Angle [Roll]: " + eulerAngle[1]/16.0 + " °");
Console.WriteLine("Euler Angle [Pitch]: " + eulerAngle[2]/16.0 + " °");
Console.WriteLine("Quaternion [W]: " + quaternion[0]/16383.0);
Console.WriteLine("Quaternion [X]: " + quaternion[1]/16383.0);
Console.WriteLine("Quaternion [Y]: " + quaternion[2]/16383.0);
Console.WriteLine("Quaternion [Z]: " + quaternion[3]/16383.0);
Console.WriteLine("Linear Acceleration [X]: " + linearAcceleration[0]/100.0 + " m/s²");
Console.WriteLine("Linear Acceleration [Y]: " + linearAcceleration[1]/100.0 + " m/s²");
Console.WriteLine("Linear Acceleration [Z]: " + linearAcceleration[2]/100.0 + " m/s²");
Console.WriteLine("Gravity Vector [X]: " + gravityVector[0]/100.0 + " m/s²");
Console.WriteLine("Gravity Vector [Y]: " + gravityVector[1]/100.0 + " m/s²");
Console.WriteLine("Gravity Vector [Z]: " + gravityVector[2]/100.0 + " m/s²");
Console.WriteLine("Temperature: " + temperature + " °C");
Console.WriteLine("Calibration Status: " + Convert.ToString(calibrationStatus, 2));
Console.WriteLine("");
}
static void Main()
{
IPConnection ipcon = new IPConnection(); // Create IP connection
BrickletIMUV3 imu = new BrickletIMUV3(UID, ipcon); // Create device object
ipcon.Connect(HOST, PORT); // Connect to brickd
// Don't use device before ipcon is connected
// Register all data callback to function AllDataCB
imu.AllDataCallback += AllDataCB;
// Set period for all data callback to 0.1s (100ms)
imu.SetAllDataCallbackConfiguration(100, false);
Console.WriteLine("Press enter to exit");
Console.ReadLine();
ipcon.Disconnect();
}
}
|
Generally, every method of the C# bindings that returns a value can
throw a Tinkerforge.TimeoutException
. This exception gets thrown if the
device did not respond. If a cable based connection is used, it is
unlikely that this exception gets thrown (assuming nobody plugs the
device out). However, if a wireless connection is used, timeouts will occur
if the distance to the device gets too big.
Since C# does not support multiple return values directly, we use the out
keyword to return multiple values from a method.
The namespace for all Brick/Bricklet bindings and the IPConnection is
Tinkerforge.*
.
All methods listed below are thread-safe.
BrickletIMUV3
(string uid, IPConnection ipcon)¶Parameters: |
|
---|---|
Returns: |
|
Creates an object with the unique device ID uid
:
BrickletIMUV3 imuV3 = new BrickletIMUV3("YOUR_DEVICE_UID", ipcon);
This object can then be used after the IP Connection is connected.
BrickletIMUV3.
GetOrientation
(out short heading, out short roll, out short pitch)¶Output Parameters: |
|
---|
Returns the current orientation (heading, roll, pitch) of the IMU Brick as independent Euler angles. Note that Euler angles always experience a gimbal lock. We recommend that you use quaternions instead, if you need the absolute orientation.
If you want to get the orientation periodically, it is recommended
to use the OrientationCallback
callback and set the period with
SetOrientationCallbackConfiguration()
.
BrickletIMUV3.
GetLinearAcceleration
(out short x, out short y, out short z)¶Output Parameters: |
|
---|
Returns the linear acceleration of the IMU Brick for the
x, y and z axis. The acceleration is in the range configured with
SetSensorConfiguration()
.
The linear acceleration is the acceleration in each of the three axis of the IMU Brick with the influences of gravity removed.
It is also possible to get the gravity vector with the influence of linear
acceleration removed, see GetGravityVector()
.
If you want to get the linear acceleration periodically, it is recommended
to use the LinearAccelerationCallback
callback and set the period with
SetLinearAccelerationCallbackConfiguration()
.
BrickletIMUV3.
GetGravityVector
(out short x, out short y, out short z)¶Output Parameters: |
|
---|
Returns the current gravity vector of the IMU Brick for the x, y and z axis.
The gravity vector is the acceleration that occurs due to gravity. Influences of additional linear acceleration are removed.
It is also possible to get the linear acceleration with the influence
of gravity removed, see GetLinearAcceleration()
.
If you want to get the gravity vector periodically, it is recommended
to use the GravityVectorCallback
callback and set the period with
SetGravityVectorCallbackConfiguration()
.
BrickletIMUV3.
GetQuaternion
(out short w, out short x, out short y, out short z)¶Output Parameters: |
|
---|
Returns the current orientation (w, x, y, z) of the IMU Brick as quaternions.
You have to divide the return values by 16383 (14 bit) to get the usual range of -1.0 to +1.0 for quaternions.
If you want to get the quaternions periodically, it is recommended
to use the QuaternionCallback
callback and set the period with
SetQuaternionCallbackConfiguration()
.
BrickletIMUV3.
GetAllData
(out short[] acceleration, out short[] magneticField, out short[] angularVelocity, out short[] eulerAngle, out short[] quaternion, out short[] linearAcceleration, out short[] gravityVector, out short temperature, out byte calibrationStatus)¶Output Parameters: |
|
---|
Return all of the available data of the IMU Brick.
GetAcceleration()
)GetMagneticField()
)GetAngularVelocity()
)GetOrientation()
)GetQuaternion()
)GetLinearAcceleration()
)GetGravityVector()
)GetTemperature()
)The calibration status consists of four pairs of two bits. Each pair of bits represents the status of the current calibration.
A value of 0 means for "not calibrated" and a value of 3 means "fully calibrated". In your program you should always be able to ignore the calibration status, it is used by the calibration window of the Brick Viewer and it can be ignored after the first calibration. See the documentation in the calibration window for more information regarding the calibration of the IMU Brick.
If you want to get the data periodically, it is recommended
to use the AllDataCallback
callback and set the period with
SetAllDataCallbackConfiguration()
.
BrickletIMUV3.
GetAcceleration
(out short x, out short y, out short z)¶Output Parameters: |
|
---|
Returns the calibrated acceleration from the accelerometer for the
x, y and z axis. The acceleration is in the range configured with
SetSensorConfiguration()
.
If you want to get the acceleration periodically, it is recommended
to use the AccelerationCallback
callback and set the period with
SetAccelerationCallbackConfiguration()
.
BrickletIMUV3.
GetMagneticField
(out short x, out short y, out short z)¶Output Parameters: |
|
---|
Returns the calibrated magnetic field from the magnetometer for the x, y and z axis.
If you want to get the magnetic field periodically, it is recommended
to use the MagneticFieldCallback
callback and set the period with
SetMagneticFieldCallbackConfiguration()
.
BrickletIMUV3.
GetAngularVelocity
(out short x, out short y, out short z)¶Output Parameters: |
|
---|
Returns the calibrated angular velocity from the gyroscope for the
x, y and z axis. The angular velocity is in the range configured with
SetSensorConfiguration()
.
If you want to get the angular velocity periodically, it is recommended
to use the AngularVelocityCallback
acallback nd set the period with
SetAngularVelocityCallbackConfiguration()
.
BrickletIMUV3.
GetTemperature
()¶Returns: |
|
---|
Returns the temperature of the IMU Brick. The temperature is measured in the core of the BNO055 IC, it is not the ambient temperature
BrickletIMUV3.
SaveCalibration
()¶Returns: |
|
---|
A call of this function saves the current calibration to be used as a starting point for the next restart of continuous calibration of the IMU Brick.
A return value of true means that the calibration could be used and false means that it could not be used (this happens if the calibration status is not "fully calibrated").
This function is used by the calibration window of the Brick Viewer, you should not need to call it in your program.
BrickletIMUV3.
SetSensorConfiguration
(byte magnetometerRate, byte gyroscopeRange, byte gyroscopeBandwidth, byte accelerometerRange, byte accelerometerBandwidth)¶Parameters: |
|
---|
Sets the available sensor configuration for the Magnetometer, Gyroscope and Accelerometer. The Accelerometer Range is user selectable in all fusion modes, all other configurations are auto-controlled in fusion mode.
The following constants are available for this function:
For magnetometerRate:
For gyroscopeRange:
For gyroscopeBandwidth:
For accelerometerRange:
For accelerometerBandwidth:
BrickletIMUV3.
GetSensorConfiguration
(out byte magnetometerRate, out byte gyroscopeRange, out byte gyroscopeBandwidth, out byte accelerometerRange, out byte accelerometerBandwidth)¶Output Parameters: |
|
---|
Returns the sensor configuration as set by SetSensorConfiguration()
.
The following constants are available for this function:
For magnetometerRate:
For gyroscopeRange:
For gyroscopeBandwidth:
For accelerometerRange:
For accelerometerBandwidth:
BrickletIMUV3.
SetSensorFusionMode
(byte mode)¶Parameters: |
|
---|
If the fusion mode is turned off, the functions GetAcceleration()
,
GetMagneticField()
and GetAngularVelocity()
return uncalibrated
and uncompensated sensor data. All other sensor data getters return no data.
Since firmware version 2.0.6 you can also use a fusion mode without magnetometer. In this mode the calculated orientation is relative (with magnetometer it is absolute with respect to the earth). However, the calculation can't be influenced by spurious magnetic fields.
Since firmware version 2.0.13 you can also use a fusion mode without fast magnetometer calibration. This mode is the same as the normal fusion mode, but the fast magnetometer calibration is turned off. So to find the orientation the first time will likely take longer, but small magnetic influences might not affect the automatic calibration as much.
The following constants are available for this function:
For mode:
BrickletIMUV3.
GetSensorFusionMode
()¶Returns: |
|
---|
Returns the sensor fusion mode as set by SetSensorFusionMode()
.
The following constants are available for this function:
For mode:
BrickletIMUV3.
GetSPITFPErrorCount
(out long errorCountAckChecksum, out long errorCountMessageChecksum, out long errorCountFrame, out long errorCountOverflow)¶Output Parameters: |
|
---|
Returns the error count for the communication between Brick and Bricklet.
The errors are divided into
The errors counts are for errors that occur on the Bricklet side. All Bricks have a similar function that returns the errors on the Brick side.
BrickletIMUV3.
SetStatusLEDConfig
(byte config)¶Parameters: |
|
---|
Sets the status LED configuration. By default the LED shows communication traffic between Brick and Bricklet, it flickers once for every 10 received data packets.
You can also turn the LED permanently on/off or show a heartbeat.
If the Bricklet is in bootloader mode, the LED is will show heartbeat by default.
The following constants are available for this function:
For config:
BrickletIMUV3.
GetStatusLEDConfig
()¶Returns: |
|
---|
Returns the configuration as set by SetStatusLEDConfig()
The following constants are available for this function:
For config:
BrickletIMUV3.
GetChipTemperature
()¶Returns: |
|
---|
Returns the temperature as measured inside the microcontroller. The value returned is not the ambient temperature!
The temperature is only proportional to the real temperature and it has bad accuracy. Practically it is only useful as an indicator for temperature changes.
BrickletIMUV3.
Reset
()¶Calling this function will reset the Bricklet. All configurations will be lost.
After a reset you have to create new device objects, calling functions on the existing ones will result in undefined behavior!
BrickletIMUV3.
GetIdentity
(out string uid, out string connectedUid, out char position, out byte[] hardwareVersion, out byte[] firmwareVersion, out int deviceIdentifier)¶Output Parameters: |
|
---|
Returns the UID, the UID where the Bricklet is connected to, the position, the hardware and firmware version as well as the device identifier.
The position can be 'a', 'b', 'c', 'd', 'e', 'f', 'g' or 'h' (Bricklet Port). A Bricklet connected to an Isolator Bricklet is always at position 'z'.
The device identifier numbers can be found here. There is also a constant for the device identifier of this Bricklet.
BrickletIMUV3.
SetAccelerationCallbackConfiguration
(long period, bool valueHasToChange)¶Parameters: |
|
---|
The period is the period with which the AccelerationCallback
callback
is triggered periodically. A value of 0 turns the callback off.
If the value has to change-parameter is set to true, the callback is only triggered after the value has changed. If the value didn't change within the period, the callback is triggered immediately on change.
If it is set to false, the callback is continuously triggered with the period, independent of the value.
BrickletIMUV3.
GetAccelerationCallbackConfiguration
(out long period, out bool valueHasToChange)¶Output Parameters: |
|
---|
Returns the callback configuration as set by SetAccelerationCallbackConfiguration()
.
BrickletIMUV3.
SetMagneticFieldCallbackConfiguration
(long period, bool valueHasToChange)¶Parameters: |
|
---|
The period is the period with which the MagneticFieldCallback
callback
is triggered periodically. A value of 0 turns the callback off.
If the value has to change-parameter is set to true, the callback is only triggered after the value has changed. If the value didn't change within the period, the callback is triggered immediately on change.
If it is set to false, the callback is continuously triggered with the period, independent of the value.
BrickletIMUV3.
GetMagneticFieldCallbackConfiguration
(out long period, out bool valueHasToChange)¶Output Parameters: |
|
---|
Returns the callback configuration as set by SetMagneticFieldCallbackConfiguration()
.
BrickletIMUV3.
SetAngularVelocityCallbackConfiguration
(long period, bool valueHasToChange)¶Parameters: |
|
---|
The period is the period with which the AngularVelocityCallback
callback
is triggered periodically. A value of 0 turns the callback off.
If the value has to change-parameter is set to true, the callback is only triggered after the value has changed. If the value didn't change within the period, the callback is triggered immediately on change.
If it is set to false, the callback is continuously triggered with the period, independent of the value.
BrickletIMUV3.
GetAngularVelocityCallbackConfiguration
(out long period, out bool valueHasToChange)¶Output Parameters: |
|
---|
Returns the callback configuration as set by SetAngularVelocityCallbackConfiguration()
.
BrickletIMUV3.
SetTemperatureCallbackConfiguration
(long period, bool valueHasToChange)¶Parameters: |
|
---|
The period is the period with which the TemperatureCallback
callback
is triggered periodically. A value of 0 turns the callback off.
If the value has to change-parameter is set to true, the callback is only triggered after the value has changed. If the value didn't change within the period, the callback is triggered immediately on change.
If it is set to false, the callback is continuously triggered with the period, independent of the value.
BrickletIMUV3.
GetTemperatureCallbackConfiguration
(out long period, out bool valueHasToChange)¶Output Parameters: |
|
---|
Returns the callback configuration as set by SetTemperatureCallbackConfiguration()
.
BrickletIMUV3.
SetOrientationCallbackConfiguration
(long period, bool valueHasToChange)¶Parameters: |
|
---|
The period is the period with which the OrientationCallback
callback
is triggered periodically. A value of 0 turns the callback off.
If the value has to change-parameter is set to true, the callback is only triggered after the value has changed. If the value didn't change within the period, the callback is triggered immediately on change.
If it is set to false, the callback is continuously triggered with the period, independent of the value.
BrickletIMUV3.
GetOrientationCallbackConfiguration
(out long period, out bool valueHasToChange)¶Output Parameters: |
|
---|
Returns the callback configuration as set by SetOrientationCallbackConfiguration()
.
BrickletIMUV3.
SetLinearAccelerationCallbackConfiguration
(long period, bool valueHasToChange)¶Parameters: |
|
---|
The period is the period with which the LinearAccelerationCallback
callback
is triggered periodically. A value of 0 turns the callback off.
If the value has to change-parameter is set to true, the callback is only triggered after the value has changed. If the value didn't change within the period, the callback is triggered immediately on change.
If it is set to false, the callback is continuously triggered with the period, independent of the value.
BrickletIMUV3.
GetLinearAccelerationCallbackConfiguration
(out long period, out bool valueHasToChange)¶Output Parameters: |
|
---|
Returns the callback configuration as set by SetLinearAccelerationCallbackConfiguration()
.
BrickletIMUV3.
SetGravityVectorCallbackConfiguration
(long period, bool valueHasToChange)¶Parameters: |
|
---|
The period is the period with which the GravityVectorCallback
callback
is triggered periodically. A value of 0 turns the callback off.
If the value has to change-parameter is set to true, the callback is only triggered after the value has changed. If the value didn't change within the period, the callback is triggered immediately on change.
If it is set to false, the callback is continuously triggered with the period, independent of the value.
BrickletIMUV3.
GetGravityVectorCallbackConfiguration
(out long period, out bool valueHasToChange)¶Output Parameters: |
|
---|
Returns the callback configuration as set by SetGravityVectorCallbackConfiguration()
.
BrickletIMUV3.
SetQuaternionCallbackConfiguration
(long period, bool valueHasToChange)¶Parameters: |
|
---|
The period is the period with which the QuaternionCallback
callback
is triggered periodically. A value of 0 turns the callback off.
If the value has to change-parameter is set to true, the callback is only triggered after the value has changed. If the value didn't change within the period, the callback is triggered immediately on change.
If it is set to false, the callback is continuously triggered with the period, independent of the value.
BrickletIMUV3.
GetQuaternionCallbackConfiguration
(out long period, out bool valueHasToChange)¶Output Parameters: |
|
---|
Returns the callback configuration as set by SetQuaternionCallbackConfiguration()
.
BrickletIMUV3.
SetAllDataCallbackConfiguration
(long period, bool valueHasToChange)¶Parameters: |
|
---|
The period is the period with which the AllDataCallback
callback
is triggered periodically. A value of 0 turns the callback off.
If the value has to change-parameter is set to true, the callback is only triggered after the value has changed. If the value didn't change within the period, the callback is triggered immediately on change.
If it is set to false, the callback is continuously triggered with the period, independent of the value.
BrickletIMUV3.
GetAllDataCallbackConfiguration
(out long period, out bool valueHasToChange)¶Output Parameters: |
|
---|
Returns the callback configuration as set by SetAllDataCallbackConfiguration()
.
Callbacks can be registered to receive time critical or recurring data from the device. The registration is done by appending your callback handler to the corresponding event:
void MyCallback(BrickletIMUV3 sender, int value)
{
System.Console.WriteLine("Value: " + value);
}
imuV3.ExampleCallback += MyCallback;
The available events are described below.
Note
Using callbacks for recurring events is always preferred compared to using getters. It will use less USB bandwidth and the latency will be a lot better, since there is no round trip time.
BrickletIMUV3.
AccelerationCallback
(BrickletIMUV3 sender, short x, short y, short z)¶Callback Parameters: |
|
---|
This callback is triggered periodically with the period that is set by
SetAccelerationCallbackConfiguration()
. The parameters are the acceleration
for the x, y and z axis.
BrickletIMUV3.
MagneticFieldCallback
(BrickletIMUV3 sender, short x, short y, short z)¶Callback Parameters: |
|
---|
This callback is triggered periodically with the period that is set by
SetMagneticFieldCallbackConfiguration()
. The parameters are the magnetic
field for the x, y and z axis.
BrickletIMUV3.
AngularVelocityCallback
(BrickletIMUV3 sender, short x, short y, short z)¶Callback Parameters: |
|
---|
This callback is triggered periodically with the period that is set by
SetAngularVelocityCallbackConfiguration()
. The parameters are the angular
velocity for the x, y and z axis.
BrickletIMUV3.
TemperatureCallback
(BrickletIMUV3 sender, short temperature)¶Callback Parameters: |
|
---|
This callback is triggered periodically with the period that is set by
SetTemperatureCallbackConfiguration()
. The parameter is the temperature.
BrickletIMUV3.
LinearAccelerationCallback
(BrickletIMUV3 sender, short x, short y, short z)¶Callback Parameters: |
|
---|
This callback is triggered periodically with the period that is set by
SetLinearAccelerationCallbackConfiguration()
. The parameters are the
linear acceleration for the x, y and z axis.
BrickletIMUV3.
GravityVectorCallback
(BrickletIMUV3 sender, short x, short y, short z)¶Callback Parameters: |
|
---|
This callback is triggered periodically with the period that is set by
SetGravityVectorCallbackConfiguration()
. The parameters gravity vector
for the x, y and z axis.
BrickletIMUV3.
OrientationCallback
(BrickletIMUV3 sender, short heading, short roll, short pitch)¶Callback Parameters: |
|
---|
This callback is triggered periodically with the period that is set by
SetOrientationCallbackConfiguration()
. The parameters are the orientation
(heading (yaw), roll, pitch) of the IMU Brick in Euler angles. See
GetOrientation()
for details.
BrickletIMUV3.
QuaternionCallback
(BrickletIMUV3 sender, short w, short x, short y, short z)¶Callback Parameters: |
|
---|
This callback is triggered periodically with the period that is set by
SetQuaternionCallbackConfiguration()
. The parameters are the orientation
(w, x, y, z) of the IMU Brick in quaternions. See GetQuaternion()
for details.
BrickletIMUV3.
AllDataCallback
(BrickletIMUV3 sender, short[] acceleration, short[] magneticField, short[] angularVelocity, short[] eulerAngle, short[] quaternion, short[] linearAcceleration, short[] gravityVector, short temperature, byte calibrationStatus)¶Callback Parameters: |
|
---|
This callback is triggered periodically with the period that is set by
SetAllDataCallbackConfiguration()
. The parameters are as for
GetAllData()
.
Virtual functions don't communicate with the device itself, but operate only on the API bindings device object. They can be called without the corresponding IP Connection object being connected.
BrickletIMUV3.
GetAPIVersion
()¶Output Parameters: |
|
---|
Returns the version of the API definition implemented by this API bindings. This is neither the release version of this API bindings nor does it tell you anything about the represented Brick or Bricklet.
BrickletIMUV3.
GetResponseExpected
(byte functionId)¶Parameters: |
|
---|---|
Returns: |
|
Returns the response expected flag for the function specified by the function ID parameter. It is true if the function is expected to send a response, false otherwise.
For getter functions this is enabled by default and cannot be disabled,
because those functions will always send a response. For callback configuration
functions it is enabled by default too, but can be disabled by
SetResponseExpected()
. For setter functions it is disabled by default
and can be enabled.
Enabling the response expected flag for a setter function allows to detect timeouts and other error conditions calls of this setter as well. The device will then send a response for this purpose. If this flag is disabled for a setter function then no response is sent and errors are silently ignored, because they cannot be detected.
The following constants are available for this function:
For functionId:
BrickletIMUV3.
SetResponseExpected
(byte functionId, bool responseExpected)¶Parameters: |
|
---|
Changes the response expected flag of the function specified by the function ID parameter. This flag can only be changed for setter (default value: false) and callback configuration functions (default value: true). For getter functions it is always enabled.
Enabling the response expected flag for a setter function allows to detect timeouts and other error conditions calls of this setter as well. The device will then send a response for this purpose. If this flag is disabled for a setter function then no response is sent and errors are silently ignored, because they cannot be detected.
The following constants are available for this function:
For functionId:
BrickletIMUV3.
SetResponseExpectedAll
(bool responseExpected)¶Parameters: |
|
---|
Changes the response expected flag for all setter and callback configuration functions of this device at once.
Internal functions are used for maintenance tasks such as flashing a new firmware of changing the UID of a Bricklet. These task should be performed using Brick Viewer instead of using the internal functions directly.
BrickletIMUV3.
SetBootloaderMode
(byte mode)¶Parameters: |
|
---|---|
Returns: |
|
Sets the bootloader mode and returns the status after the requested mode change was instigated.
You can change from bootloader mode to firmware mode and vice versa. A change from bootloader mode to firmware mode will only take place if the entry function, device identifier and CRC are present and correct.
This function is used by Brick Viewer during flashing. It should not be necessary to call it in a normal user program.
The following constants are available for this function:
For mode:
For status:
BrickletIMUV3.
GetBootloaderMode
()¶Returns: |
|
---|
Returns the current bootloader mode, see SetBootloaderMode()
.
The following constants are available for this function:
For mode:
BrickletIMUV3.
SetWriteFirmwarePointer
(long pointer)¶Parameters: |
|
---|
Sets the firmware pointer for WriteFirmware()
. The pointer has
to be increased by chunks of size 64. The data is written to flash
every 4 chunks (which equals to one page of size 256).
This function is used by Brick Viewer during flashing. It should not be necessary to call it in a normal user program.
BrickletIMUV3.
WriteFirmware
(byte[] data)¶Parameters: |
|
---|---|
Returns: |
|
Writes 64 Bytes of firmware at the position as written by
SetWriteFirmwarePointer()
before. The firmware is written
to flash every 4 chunks.
You can only write firmware in bootloader mode.
This function is used by Brick Viewer during flashing. It should not be necessary to call it in a normal user program.
BrickletIMUV3.
WriteUID
(long uid)¶Parameters: |
|
---|
Writes a new UID into flash. If you want to set a new UID you have to decode the Base58 encoded UID string into an integer first.
We recommend that you use Brick Viewer to change the UID.
BrickletIMUV3.
ReadUID
()¶Returns: |
|
---|
Returns the current UID as an integer. Encode as Base58 to get the usual string version.
BrickletIMUV3.
DEVICE_IDENTIFIER
¶This constant is used to identify a IMU Bricklet 3.0.
The GetIdentity()
function and the
IPConnection.EnumerateCallback
callback of the IP Connection have a deviceIdentifier
parameter to specify
the Brick's or Bricklet's type.
BrickletIMUV3.
DEVICE_DISPLAY_NAME
¶This constant represents the human readable name of a IMU Bricklet 3.0.