C# - Motorized Linear Poti Bricklet

This is the description of the C# API bindings for the Motorized Linear Poti Bricklet. General information and technical specifications for the Motorized Linear Poti Bricklet are summarized in its hardware description.

An installation guide for the C# API bindings is part of their general description.

Examples

The example code below is Public Domain (CC0 1.0).

Simple

Download (ExampleSimple.cs)

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
using System;
using Tinkerforge;

class Example
{
    private static string HOST = "localhost";
    private static int PORT = 4223;
    private static string UID = "XYZ"; // Change XYZ to the UID of your Motorized Linear Poti Bricklet

    static void Main()
    {
        IPConnection ipcon = new IPConnection(); // Create IP connection
        BrickletMotorizedLinearPoti mlp =
          new BrickletMotorizedLinearPoti(UID, ipcon); // Create device object

        ipcon.Connect(HOST, PORT); // Connect to brickd
        // Don't use device before ipcon is connected

        // Get current position
        int position = mlp.GetPosition();
        Console.WriteLine("Position: " + position); // Range: 0 to 100

        Console.WriteLine("Press enter to exit");
        Console.ReadLine();
        ipcon.Disconnect();
    }
}

Callback

Download (ExampleCallback.cs)

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
using System;
using Tinkerforge;

class Example
{
    private static string HOST = "localhost";
    private static int PORT = 4223;
    private static string UID = "XYZ"; // Change XYZ to the UID of your Motorized Linear Poti Bricklet

    // Callback function for position callback
    static void PositionCB(BrickletMotorizedLinearPoti sender, int position)
    {
        Console.WriteLine("Position: " + position); // Range: 0 to 100
    }

    static void Main()
    {
        IPConnection ipcon = new IPConnection(); // Create IP connection
        BrickletMotorizedLinearPoti mlp =
          new BrickletMotorizedLinearPoti(UID, ipcon); // Create device object

        ipcon.Connect(HOST, PORT); // Connect to brickd
        // Don't use device before ipcon is connected

        // Register position callback to function PositionCB
        mlp.PositionCallback += PositionCB;

        // Set period for position callback to 0.05s (50ms) without a threshold
        mlp.SetPositionCallbackConfiguration(50, false, 'x', 0, 0);

        Console.WriteLine("Press enter to exit");
        Console.ReadLine();
        ipcon.Disconnect();
    }
}

Motor

Download (ExampleMotor.cs)

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
using System;
using Tinkerforge;

class Example
{
    private static string HOST = "localhost";
    private static int PORT = 4223;
    private static string UID = "XYZ"; // Change XYZ to the UID of your Motorized Linear Poti Bricklet

    // Callback function for position reached callback
    static void PositionReachedCB(BrickletMotorizedLinearPoti sender, int position)
    {
        Console.WriteLine("Position: " + position); // Range: 0 to 100
    }

    static void Main()
    {
        IPConnection ipcon = new IPConnection(); // Create IP connection
        BrickletMotorizedLinearPoti mlp =
          new BrickletMotorizedLinearPoti(UID, ipcon); // Create device object

        ipcon.Connect(HOST, PORT); // Connect to brickd
        // Don't use device before ipcon is connected

        // Register position reached callback to function PositionReachedCB
        mlp.PositionReachedCallback += PositionReachedCB;

        // Move slider smooth to the middle
        mlp.SetMotorPosition(50, BrickletMotorizedLinearPoti.DRIVE_MODE_SMOOTH, false);

        Console.WriteLine("Press enter to exit");
        Console.ReadLine();
        ipcon.Disconnect();
    }
}

API

Generally, every method of the C# bindings that returns a value can throw a Tinkerforge.TimeoutException. This exception gets thrown if the device did not respond. If a cable based connection is used, it is unlikely that this exception gets thrown (assuming nobody plugs the device out). However, if a wireless connection is used, timeouts will occur if the distance to the device gets too big.

Since C# does not support multiple return values directly, we use the out keyword to return multiple values from a method.

The namespace for all Brick/Bricklet bindings and the IPConnection is Tinkerforge.*.

All methods listed below are thread-safe.

Basic Functions

class BrickletMotorizedLinearPoti(string uid, IPConnection ipcon)
Parameters:
  • uid – Type: string
  • ipcon – Type: IPConnection
Returns:
  • motorizedLinearPoti – Type: BrickletMotorizedLinearPoti

Creates an object with the unique device ID uid:

BrickletMotorizedLinearPoti motorizedLinearPoti = new BrickletMotorizedLinearPoti("YOUR_DEVICE_UID", ipcon);

This object can then be used after the IP Connection is connected.

int BrickletMotorizedLinearPoti.GetPosition()
Returns:
  • position – Type: int, Range: [0 to 100]

Returns the position of the linear potentiometer. The value is between 0 (slider down) and 100 (slider up).

If you want to get the value periodically, it is recommended to use the PositionCallback callback. You can set the callback configuration with SetPositionCallbackConfiguration().

void BrickletMotorizedLinearPoti.SetMotorPosition(int position, byte driveMode, bool holdPosition)
Parameters:
  • position – Type: int, Range: [0 to 100]
  • driveMode – Type: byte, Range: See constants
  • holdPosition – Type: bool

Sets the position of the potentiometer. The motorized potentiometer will immediately start to approach the position. Depending on the chosen drive mode, the position will either be reached as fast as possible or in a slow but smooth motion.

The position has to be between 0 (slider down) and 100 (slider up).

If you set the hold position parameter to true, the position will automatically be retained. If a user changes the position of the potentiometer, it will automatically drive back to the original set point.

If the hold position parameter is set to false, the potentiometer can be changed again by the user as soon as the set point was reached once.

The following constants are available for this function:

For driveMode:

  • BrickletMotorizedLinearPoti.DRIVE_MODE_FAST = 0
  • BrickletMotorizedLinearPoti.DRIVE_MODE_SMOOTH = 1
void BrickletMotorizedLinearPoti.GetMotorPosition(out int position, out byte driveMode, out bool holdPosition, out bool positionReached)
Output Parameters:
  • position – Type: int, Range: [0 to 100]
  • driveMode – Type: byte, Range: See constants
  • holdPosition – Type: bool
  • positionReached – Type: bool

Returns the last motor position as set by SetMotorPosition(). This is not the current position (use GetPosition() to get the current position). This is the last used set point and configuration.

The position reached parameter is true if the position has been reached at one point. The position may have been changed again in the meantime by the user.

The following constants are available for this function:

For driveMode:

  • BrickletMotorizedLinearPoti.DRIVE_MODE_FAST = 0
  • BrickletMotorizedLinearPoti.DRIVE_MODE_SMOOTH = 1

Advanced Functions

void BrickletMotorizedLinearPoti.Calibrate()

Starts a calibration procedure. The potentiometer will be driven to the extreme points to calibrate the potentiometer.

The calibration is saved in flash, it does not have to be called on every start up.

The Motorized Linear Poti Bricklet is already factory-calibrated during testing at Tinkerforge.

void BrickletMotorizedLinearPoti.GetSPITFPErrorCount(out long errorCountAckChecksum, out long errorCountMessageChecksum, out long errorCountFrame, out long errorCountOverflow)
Output Parameters:
  • errorCountAckChecksum – Type: long, Range: [0 to 232 - 1]
  • errorCountMessageChecksum – Type: long, Range: [0 to 232 - 1]
  • errorCountFrame – Type: long, Range: [0 to 232 - 1]
  • errorCountOverflow – Type: long, Range: [0 to 232 - 1]

Returns the error count for the communication between Brick and Bricklet.

The errors are divided into

  • ACK checksum errors,
  • message checksum errors,
  • framing errors and
  • overflow errors.

The errors counts are for errors that occur on the Bricklet side. All Bricks have a similar function that returns the errors on the Brick side.

void BrickletMotorizedLinearPoti.SetStatusLEDConfig(byte config)
Parameters:
  • config – Type: byte, Range: See constants, Default: 3

Sets the status LED configuration. By default the LED shows communication traffic between Brick and Bricklet, it flickers once for every 10 received data packets.

You can also turn the LED permanently on/off or show a heartbeat.

If the Bricklet is in bootloader mode, the LED is will show heartbeat by default.

The following constants are available for this function:

For config:

  • BrickletMotorizedLinearPoti.STATUS_LED_CONFIG_OFF = 0
  • BrickletMotorizedLinearPoti.STATUS_LED_CONFIG_ON = 1
  • BrickletMotorizedLinearPoti.STATUS_LED_CONFIG_SHOW_HEARTBEAT = 2
  • BrickletMotorizedLinearPoti.STATUS_LED_CONFIG_SHOW_STATUS = 3
byte BrickletMotorizedLinearPoti.GetStatusLEDConfig()
Returns:
  • config – Type: byte, Range: See constants, Default: 3

Returns the configuration as set by SetStatusLEDConfig()

The following constants are available for this function:

For config:

  • BrickletMotorizedLinearPoti.STATUS_LED_CONFIG_OFF = 0
  • BrickletMotorizedLinearPoti.STATUS_LED_CONFIG_ON = 1
  • BrickletMotorizedLinearPoti.STATUS_LED_CONFIG_SHOW_HEARTBEAT = 2
  • BrickletMotorizedLinearPoti.STATUS_LED_CONFIG_SHOW_STATUS = 3
short BrickletMotorizedLinearPoti.GetChipTemperature()
Returns:
  • temperature – Type: short, Unit: 1 °C, Range: [-215 to 215 - 1]

Returns the temperature as measured inside the microcontroller. The value returned is not the ambient temperature!

The temperature is only proportional to the real temperature and it has bad accuracy. Practically it is only useful as an indicator for temperature changes.

void BrickletMotorizedLinearPoti.Reset()

Calling this function will reset the Bricklet. All configurations will be lost.

After a reset you have to create new device objects, calling functions on the existing ones will result in undefined behavior!

void BrickletMotorizedLinearPoti.GetIdentity(out string uid, out string connectedUid, out char position, out byte[] hardwareVersion, out byte[] firmwareVersion, out int deviceIdentifier)
Output Parameters:
  • uid – Type: string, Length: up to 8
  • connectedUid – Type: string, Length: up to 8
  • position – Type: char, Range: ['a' to 'h', 'z']
  • hardwareVersion – Type: byte[], Length: 3
    • 0: major – Type: byte, Range: [0 to 255]
    • 1: minor – Type: byte, Range: [0 to 255]
    • 2: revision – Type: byte, Range: [0 to 255]
  • firmwareVersion – Type: byte[], Length: 3
    • 0: major – Type: byte, Range: [0 to 255]
    • 1: minor – Type: byte, Range: [0 to 255]
    • 2: revision – Type: byte, Range: [0 to 255]
  • deviceIdentifier – Type: int, Range: [0 to 216 - 1]

Returns the UID, the UID where the Bricklet is connected to, the position, the hardware and firmware version as well as the device identifier.

The position can be 'a', 'b', 'c', 'd', 'e', 'f', 'g' or 'h' (Bricklet Port). A Bricklet connected to an Isolator Bricklet is always at position 'z'.

The device identifier numbers can be found here. There is also a constant for the device identifier of this Bricklet.

Callback Configuration Functions

void BrickletMotorizedLinearPoti.SetPositionCallbackConfiguration(long period, bool valueHasToChange, char option, int min, int max)
Parameters:
  • period – Type: long, Unit: 1 ms, Range: [0 to 232 - 1], Default: 0
  • valueHasToChange – Type: bool, Default: false
  • option – Type: char, Range: See constants, Default: 'x'
  • min – Type: int, Range: [0 to 216 - 1], Default: 0
  • max – Type: int, Range: [0 to 216 - 1], Default: 0

The period is the period with which the PositionCallback callback is triggered periodically. A value of 0 turns the callback off.

If the value has to change-parameter is set to true, the callback is only triggered after the value has changed. If the value didn't change within the period, the callback is triggered immediately on change.

If it is set to false, the callback is continuously triggered with the period, independent of the value.

It is furthermore possible to constrain the callback with thresholds.

The option-parameter together with min/max sets a threshold for the PositionCallback callback.

The following options are possible:

Option Description
'x' Threshold is turned off
'o' Threshold is triggered when the value is outside the min and max values
'i' Threshold is triggered when the value is inside or equal to the min and max values
'<' Threshold is triggered when the value is smaller than the min value (max is ignored)
'>' Threshold is triggered when the value is greater than the min value (max is ignored)

If the option is set to 'x' (threshold turned off) the callback is triggered with the fixed period.

The following constants are available for this function:

For option:

  • BrickletMotorizedLinearPoti.THRESHOLD_OPTION_OFF = 'x'
  • BrickletMotorizedLinearPoti.THRESHOLD_OPTION_OUTSIDE = 'o'
  • BrickletMotorizedLinearPoti.THRESHOLD_OPTION_INSIDE = 'i'
  • BrickletMotorizedLinearPoti.THRESHOLD_OPTION_SMALLER = '<'
  • BrickletMotorizedLinearPoti.THRESHOLD_OPTION_GREATER = '>'
void BrickletMotorizedLinearPoti.GetPositionCallbackConfiguration(out long period, out bool valueHasToChange, out char option, out int min, out int max)
Output Parameters:
  • period – Type: long, Unit: 1 ms, Range: [0 to 232 - 1], Default: 0
  • valueHasToChange – Type: bool, Default: false
  • option – Type: char, Range: See constants, Default: 'x'
  • min – Type: int, Range: [0 to 216 - 1], Default: 0
  • max – Type: int, Range: [0 to 216 - 1], Default: 0

Returns the callback configuration as set by SetPositionCallbackConfiguration().

The following constants are available for this function:

For option:

  • BrickletMotorizedLinearPoti.THRESHOLD_OPTION_OFF = 'x'
  • BrickletMotorizedLinearPoti.THRESHOLD_OPTION_OUTSIDE = 'o'
  • BrickletMotorizedLinearPoti.THRESHOLD_OPTION_INSIDE = 'i'
  • BrickletMotorizedLinearPoti.THRESHOLD_OPTION_SMALLER = '<'
  • BrickletMotorizedLinearPoti.THRESHOLD_OPTION_GREATER = '>'
void BrickletMotorizedLinearPoti.SetPositionReachedCallbackConfiguration(bool enabled)
Parameters:
  • enabled – Type: bool, Default: true

Enables/Disables PositionReachedCallback callback.

bool BrickletMotorizedLinearPoti.GetPositionReachedCallbackConfiguration()
Returns:
  • enabled – Type: bool, Default: true

Returns the PositionReachedCallback callback configuration as set by SetPositionReachedCallbackConfiguration().

Callbacks

Callbacks can be registered to receive time critical or recurring data from the device. The registration is done by appending your callback handler to the corresponding event:

void MyCallback(BrickletMotorizedLinearPoti sender, int value)
{
    System.Console.WriteLine("Value: " + value);
}

motorizedLinearPoti.ExampleCallback += MyCallback;

The available events are described below.

Note

Using callbacks for recurring events is always preferred compared to using getters. It will use less USB bandwidth and the latency will be a lot better, since there is no round trip time.

event BrickletMotorizedLinearPoti.PositionCallback(BrickletMotorizedLinearPoti sender, int position)
Callback Parameters:
  • sender – Type: BrickletMotorizedLinearPoti
  • position – Type: int, Range: [0 to 100]

This callback is triggered periodically according to the configuration set by SetPositionCallbackConfiguration().

The parameter is the same as GetPosition().

event BrickletMotorizedLinearPoti.PositionReachedCallback(BrickletMotorizedLinearPoti sender, int position)
Callback Parameters:
  • sender – Type: BrickletMotorizedLinearPoti
  • position – Type: int, Range: [0 to 100]

This callback is triggered if a new position as set by SetMotorPosition() is reached.

The parameter is the current position.

Virtual Functions

Virtual functions don't communicate with the device itself, but operate only on the API bindings device object. They can be called without the corresponding IP Connection object being connected.

byte[] BrickletMotorizedLinearPoti.GetAPIVersion()
Output Parameters:
  • apiVersion – Type: byte[], Length: 3
    • 0: major – Type: byte, Range: [0 to 255]
    • 1: minor – Type: byte, Range: [0 to 255]
    • 2: revision – Type: byte, Range: [0 to 255]

Returns the version of the API definition implemented by this API bindings. This is neither the release version of this API bindings nor does it tell you anything about the represented Brick or Bricklet.

bool BrickletMotorizedLinearPoti.GetResponseExpected(byte functionId)
Parameters:
  • functionId – Type: byte, Range: See constants
Returns:
  • responseExpected – Type: bool

Returns the response expected flag for the function specified by the function ID parameter. It is true if the function is expected to send a response, false otherwise.

For getter functions this is enabled by default and cannot be disabled, because those functions will always send a response. For callback configuration functions it is enabled by default too, but can be disabled by SetResponseExpected(). For setter functions it is disabled by default and can be enabled.

Enabling the response expected flag for a setter function allows to detect timeouts and other error conditions calls of this setter as well. The device will then send a response for this purpose. If this flag is disabled for a setter function then no response is sent and errors are silently ignored, because they cannot be detected.

The following constants are available for this function:

For functionId:

  • BrickletMotorizedLinearPoti.FUNCTION_SET_POSITION_CALLBACK_CONFIGURATION = 2
  • BrickletMotorizedLinearPoti.FUNCTION_SET_MOTOR_POSITION = 5
  • BrickletMotorizedLinearPoti.FUNCTION_CALIBRATE = 7
  • BrickletMotorizedLinearPoti.FUNCTION_SET_POSITION_REACHED_CALLBACK_CONFIGURATION = 8
  • BrickletMotorizedLinearPoti.FUNCTION_SET_WRITE_FIRMWARE_POINTER = 237
  • BrickletMotorizedLinearPoti.FUNCTION_SET_STATUS_LED_CONFIG = 239
  • BrickletMotorizedLinearPoti.FUNCTION_RESET = 243
  • BrickletMotorizedLinearPoti.FUNCTION_WRITE_UID = 248
void BrickletMotorizedLinearPoti.SetResponseExpected(byte functionId, bool responseExpected)
Parameters:
  • functionId – Type: byte, Range: See constants
  • responseExpected – Type: bool

Changes the response expected flag of the function specified by the function ID parameter. This flag can only be changed for setter (default value: false) and callback configuration functions (default value: true). For getter functions it is always enabled.

Enabling the response expected flag for a setter function allows to detect timeouts and other error conditions calls of this setter as well. The device will then send a response for this purpose. If this flag is disabled for a setter function then no response is sent and errors are silently ignored, because they cannot be detected.

The following constants are available for this function:

For functionId:

  • BrickletMotorizedLinearPoti.FUNCTION_SET_POSITION_CALLBACK_CONFIGURATION = 2
  • BrickletMotorizedLinearPoti.FUNCTION_SET_MOTOR_POSITION = 5
  • BrickletMotorizedLinearPoti.FUNCTION_CALIBRATE = 7
  • BrickletMotorizedLinearPoti.FUNCTION_SET_POSITION_REACHED_CALLBACK_CONFIGURATION = 8
  • BrickletMotorizedLinearPoti.FUNCTION_SET_WRITE_FIRMWARE_POINTER = 237
  • BrickletMotorizedLinearPoti.FUNCTION_SET_STATUS_LED_CONFIG = 239
  • BrickletMotorizedLinearPoti.FUNCTION_RESET = 243
  • BrickletMotorizedLinearPoti.FUNCTION_WRITE_UID = 248
void BrickletMotorizedLinearPoti.SetResponseExpectedAll(bool responseExpected)
Parameters:
  • responseExpected – Type: bool

Changes the response expected flag for all setter and callback configuration functions of this device at once.

Internal Functions

Internal functions are used for maintenance tasks such as flashing a new firmware of changing the UID of a Bricklet. These task should be performed using Brick Viewer instead of using the internal functions directly.

byte BrickletMotorizedLinearPoti.SetBootloaderMode(byte mode)
Parameters:
  • mode – Type: byte, Range: See constants
Returns:
  • status – Type: byte, Range: See constants

Sets the bootloader mode and returns the status after the requested mode change was instigated.

You can change from bootloader mode to firmware mode and vice versa. A change from bootloader mode to firmware mode will only take place if the entry function, device identifier and CRC are present and correct.

This function is used by Brick Viewer during flashing. It should not be necessary to call it in a normal user program.

The following constants are available for this function:

For mode:

  • BrickletMotorizedLinearPoti.BOOTLOADER_MODE_BOOTLOADER = 0
  • BrickletMotorizedLinearPoti.BOOTLOADER_MODE_FIRMWARE = 1
  • BrickletMotorizedLinearPoti.BOOTLOADER_MODE_BOOTLOADER_WAIT_FOR_REBOOT = 2
  • BrickletMotorizedLinearPoti.BOOTLOADER_MODE_FIRMWARE_WAIT_FOR_REBOOT = 3
  • BrickletMotorizedLinearPoti.BOOTLOADER_MODE_FIRMWARE_WAIT_FOR_ERASE_AND_REBOOT = 4

For status:

  • BrickletMotorizedLinearPoti.BOOTLOADER_STATUS_OK = 0
  • BrickletMotorizedLinearPoti.BOOTLOADER_STATUS_INVALID_MODE = 1
  • BrickletMotorizedLinearPoti.BOOTLOADER_STATUS_NO_CHANGE = 2
  • BrickletMotorizedLinearPoti.BOOTLOADER_STATUS_ENTRY_FUNCTION_NOT_PRESENT = 3
  • BrickletMotorizedLinearPoti.BOOTLOADER_STATUS_DEVICE_IDENTIFIER_INCORRECT = 4
  • BrickletMotorizedLinearPoti.BOOTLOADER_STATUS_CRC_MISMATCH = 5
byte BrickletMotorizedLinearPoti.GetBootloaderMode()
Returns:
  • mode – Type: byte, Range: See constants

Returns the current bootloader mode, see SetBootloaderMode().

The following constants are available for this function:

For mode:

  • BrickletMotorizedLinearPoti.BOOTLOADER_MODE_BOOTLOADER = 0
  • BrickletMotorizedLinearPoti.BOOTLOADER_MODE_FIRMWARE = 1
  • BrickletMotorizedLinearPoti.BOOTLOADER_MODE_BOOTLOADER_WAIT_FOR_REBOOT = 2
  • BrickletMotorizedLinearPoti.BOOTLOADER_MODE_FIRMWARE_WAIT_FOR_REBOOT = 3
  • BrickletMotorizedLinearPoti.BOOTLOADER_MODE_FIRMWARE_WAIT_FOR_ERASE_AND_REBOOT = 4
void BrickletMotorizedLinearPoti.SetWriteFirmwarePointer(long pointer)
Parameters:
  • pointer – Type: long, Unit: 1 B, Range: [0 to 232 - 1]

Sets the firmware pointer for WriteFirmware(). The pointer has to be increased by chunks of size 64. The data is written to flash every 4 chunks (which equals to one page of size 256).

This function is used by Brick Viewer during flashing. It should not be necessary to call it in a normal user program.

byte BrickletMotorizedLinearPoti.WriteFirmware(byte[] data)
Parameters:
  • data – Type: byte[], Length: 64, Range: [0 to 255]
Returns:
  • status – Type: byte, Range: [0 to 255]

Writes 64 Bytes of firmware at the position as written by SetWriteFirmwarePointer() before. The firmware is written to flash every 4 chunks.

You can only write firmware in bootloader mode.

This function is used by Brick Viewer during flashing. It should not be necessary to call it in a normal user program.

void BrickletMotorizedLinearPoti.WriteUID(long uid)
Parameters:
  • uid – Type: long, Range: [0 to 232 - 1]

Writes a new UID into flash. If you want to set a new UID you have to decode the Base58 encoded UID string into an integer first.

We recommend that you use Brick Viewer to change the UID.

long BrickletMotorizedLinearPoti.ReadUID()
Returns:
  • uid – Type: long, Range: [0 to 232 - 1]

Returns the current UID as an integer. Encode as Base58 to get the usual string version.

Constants

int BrickletMotorizedLinearPoti.DEVICE_IDENTIFIER

This constant is used to identify a Motorized Linear Poti Bricklet.

The GetIdentity() function and the IPConnection.EnumerateCallback callback of the IP Connection have a deviceIdentifier parameter to specify the Brick's or Bricklet's type.

string BrickletMotorizedLinearPoti.DEVICE_DISPLAY_NAME

This constant represents the human readable name of a Motorized Linear Poti Bricklet.