Perl - Solid State Relay Bricklet

This is the description of the Perl API bindings for the Solid State Relay Bricklet. General information and technical specifications for the Solid State Relay Bricklet are summarized in its hardware description.

An installation guide for the Perl API bindings is part of their general description.

Examples

The example code below is Public Domain (CC0 1.0).

Simple

Download (example_simple.pl)

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
#!/usr/bin/perl

use strict;
use Tinkerforge::IPConnection;
use Tinkerforge::BrickletSolidStateRelay;

use constant HOST => 'localhost';
use constant PORT => 4223;
use constant UID => 'XYZ'; # Change XYZ to the UID of your Solid State Relay Bricklet

my $ipcon = Tinkerforge::IPConnection->new(); # Create IP connection
my $ssr = Tinkerforge::BrickletSolidStateRelay->new(&UID, $ipcon); # Create device object

$ipcon->connect(&HOST, &PORT); # Connect to brickd
# Don't use device before ipcon is connected

# Turn relay on/off 10 times with 1 second delay
for (my $i = 0; $i < 5; $i++)
{
    sleep(1);
    $ssr->set_state(1);
    sleep(1);
    $ssr->set_state(0);
}

print "Press key to exit\n";
<STDIN>;
$ipcon->disconnect();

API

Generally, every subroutine of the Perl bindings can report an error as Tinkerforge::Error object via croak(). The object has a get_code() and a get_message() subroutine. There are different error code:

  • Error->ALREADY_CONNECTED = 11
  • Error->NOT_CONNECTED = 12
  • Error->CONNECT_FAILED = 13
  • Error->INVALID_FUNCTION_ID = 21
  • Error->TIMEOUT = 31
  • Error->INVALID_PARAMETER = 41
  • Error->FUNCTION_NOT_SUPPORTED = 42
  • Error->UNKNOWN_ERROR = 43
  • Error->STREAM_OUT_OF_SYNC = 51
  • Error->INVALID_UID = 61
  • Error->NON_ASCII_CHAR_IN_SECRET = 71
  • Error->WRONG_DEVICE_TYPE = 81
  • Error->DEVICE_REPLACED = 82
  • Error->WRONG_RESPONSE_LENGTH = 83

All functions listed below are thread-safe.

Basic Functions

BrickletSolidStateRelay->new($uid, $ipcon)
Parameters:
  • $uid – Type: string
  • $ipcon – Type: IPConnection
Returns:
  • $solid_state_relay – Type: BrickletSolidStateRelay

Creates an object with the unique device ID $uid:

$solid_state_relay = BrickletSolidStateRelay->new("YOUR_DEVICE_UID", $ipcon);

This object can then be used after the IP Connection is connected.

BrickletSolidStateRelay->set_state($state)
Parameters:
  • $state – Type: bool, Default: 0
Returns:
  • undef

Sets the state of the relays true means on and false means off.

A running monoflop timer will be aborted if this function is called.

BrickletSolidStateRelay->get_state()
Returns:
  • $state – Type: bool, Default: 0

Returns the state of the relay, true means on and false means off.

Advanced Functions

BrickletSolidStateRelay->set_monoflop($state, $time)
Parameters:
  • $state – Type: bool
  • $time – Type: int, Unit: 1 ms, Range: [0 to 232 - 1]
Returns:
  • undef

The first parameter is the desired state of the relay (true means on and false means off). The second parameter indicates the time that the relay should hold the state.

If this function is called with the parameters (true, 1500): The relay will turn on and in 1.5s it will turn off again.

A monoflop can be used as a failsafe mechanism. For example: Lets assume you have a RS485 bus and a Solid State Relay Bricklet connected to one of the slave stacks. You can now call this function every second, with a time parameter of two seconds. The relay will be on all the time. If now the RS485 connection is lost, the relay will turn off in at most two seconds.

BrickletSolidStateRelay->get_monoflop()
Return Array:
  • 0: $state – Type: bool
  • 1: $time – Type: int, Unit: 1 ms, Range: [0 to 232 - 1]
  • 2: $time_remaining – Type: int, Unit: 1 ms, Range: [0 to 232 - 1]

Returns the current state and the time as set by set_monoflop() as well as the remaining time until the state flips.

If the timer is not running currently, the remaining time will be returned as 0.

BrickletSolidStateRelay->get_identity()
Return Array:
  • 0: $uid – Type: string, Length: up to 8
  • 1: $connected_uid – Type: string, Length: up to 8
  • 2: $position – Type: char, Range: ['a' to 'h', 'z']
  • 3: \@hardware_version – Type: [int, ...], Length: 3
    • 0: $major – Type: int, Range: [0 to 255]
    • 1: $minor – Type: int, Range: [0 to 255]
    • 2: $revision – Type: int, Range: [0 to 255]
  • 4: \@firmware_version – Type: [int, ...], Length: 3
    • 0: $major – Type: int, Range: [0 to 255]
    • 1: $minor – Type: int, Range: [0 to 255]
    • 2: $revision – Type: int, Range: [0 to 255]
  • 5: $device_identifier – Type: int, Range: [0 to 216 - 1]

Returns the UID, the UID where the Bricklet is connected to, the position, the hardware and firmware version as well as the device identifier.

The position can be 'a', 'b', 'c', 'd', 'e', 'f', 'g' or 'h' (Bricklet Port). A Bricklet connected to an Isolator Bricklet is always at position 'z'.

The device identifier numbers can be found here. There is also a constant for the device identifier of this Bricklet.

Callback Configuration Functions

BrickletSolidStateRelay->register_callback($callback_id, $function)
Parameters:
  • $callback_id – Type: int
  • $function – Type: string
Returns:
  • undef

Registers the given $function name with the given $callback_id.

The available callback IDs with corresponding function signatures are listed below.

Callbacks

Callbacks can be registered to receive time critical or recurring data from the device. The registration is done with the register_callback() function of the device object. The first parameter is the callback ID and the second parameter the callback function name:

sub my_callback
{
    print "@_[0]";
}

$solid_state_relay->register_callback(BrickletSolidStateRelay->CALLBACK_EXAMPLE, 'my_callback')

The callback function will be called from an internal thread of the IP Connection. In contrast to many other programming languages, variables are not automatically shared between threads in Perl. If you want to share a global variable between a callback function and the rest for your program it has to be marked as :shared. See the documentation of the threads::shared Perl module for more details.

The available constants with inherent number and type of parameters are described below.

Note

Using callbacks for recurring events is always preferred compared to using getters. It will use less USB bandwidth and the latency will be a lot better, since there is no round trip time.

BrickletSolidStateRelay->CALLBACK_MONOFLOP_DONE
Callback Parameters:
  • $state – Type: bool

This callback is triggered whenever the monoflop timer reaches 0. The parameter is the current state of the relay (the state after the monoflop).

Virtual Functions

Virtual functions don't communicate with the device itself, but operate only on the API bindings device object. They can be called without the corresponding IP Connection object being connected.

BrickletSolidStateRelay->get_api_version()
Return Array:
  • 0: \@api_version – Type: [int, ...], Length: 3
    • 0: $major – Type: int, Range: [0 to 255]
    • 1: $minor – Type: int, Range: [0 to 255]
    • 2: $revision – Type: int, Range: [0 to 255]

Returns the version of the API definition implemented by this API bindings. This is neither the release version of this API bindings nor does it tell you anything about the represented Brick or Bricklet.

BrickletSolidStateRelay->get_response_expected($function_id)
Parameters:
  • $function_id – Type: int, Range: See constants
Returns:
  • $response_expected – Type: bool

Returns the response expected flag for the function specified by the function ID parameter. It is true if the function is expected to send a response, false otherwise.

For getter functions this is enabled by default and cannot be disabled, because those functions will always send a response. For callback configuration functions it is enabled by default too, but can be disabled by set_response_expected(). For setter functions it is disabled by default and can be enabled.

Enabling the response expected flag for a setter function allows to detect timeouts and other error conditions calls of this setter as well. The device will then send a response for this purpose. If this flag is disabled for a setter function then no response is sent and errors are silently ignored, because they cannot be detected.

The following constants are available for this function:

For $function_id:

  • BrickletSolidStateRelay->FUNCTION_SET_STATE = 1
  • BrickletSolidStateRelay->FUNCTION_SET_MONOFLOP = 3
BrickletSolidStateRelay->set_response_expected($function_id, $response_expected)
Parameters:
  • $function_id – Type: int, Range: See constants
  • $response_expected – Type: bool
Returns:
  • undef

Changes the response expected flag of the function specified by the function ID parameter. This flag can only be changed for setter (default value: false) and callback configuration functions (default value: true). For getter functions it is always enabled.

Enabling the response expected flag for a setter function allows to detect timeouts and other error conditions calls of this setter as well. The device will then send a response for this purpose. If this flag is disabled for a setter function then no response is sent and errors are silently ignored, because they cannot be detected.

The following constants are available for this function:

For $function_id:

  • BrickletSolidStateRelay->FUNCTION_SET_STATE = 1
  • BrickletSolidStateRelay->FUNCTION_SET_MONOFLOP = 3
BrickletSolidStateRelay->set_response_expected_all($response_expected)
Parameters:
  • $response_expected – Type: bool
Returns:
  • undef

Changes the response expected flag for all setter and callback configuration functions of this device at once.

Constants

BrickletSolidStateRelay->DEVICE_IDENTIFIER

This constant is used to identify a Solid State Relay Bricklet.

The get_identity() function and the IPConnection->CALLBACK_ENUMERATE callback of the IP Connection have a device_identifier parameter to specify the Brick's or Bricklet's type.

BrickletSolidStateRelay->DEVICE_DISPLAY_NAME

This constant represents the human readable name of a Solid State Relay Bricklet.