Java - Thermocouple Bricklet

This is the description of the Java API bindings for the Thermocouple Bricklet. General information and technical specifications for the Thermocouple Bricklet are summarized in its hardware description.

An installation guide for the Java API bindings is part of their general description.

Examples

The example code below is Public Domain (CC0 1.0).

Simple

Download (ExampleSimple.java)

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
import com.tinkerforge.IPConnection;
import com.tinkerforge.BrickletThermocouple;

public class ExampleSimple {
    private static final String HOST = "localhost";
    private static final int PORT = 4223;

    // Change XYZ to the UID of your Thermocouple Bricklet
    private static final String UID = "XYZ";

    // Note: To make the example code cleaner we do not handle exceptions. Exceptions
    //       you might normally want to catch are described in the documentation
    public static void main(String args[]) throws Exception {
        IPConnection ipcon = new IPConnection(); // Create IP connection
        BrickletThermocouple t = new BrickletThermocouple(UID, ipcon); // Create device object

        ipcon.connect(HOST, PORT); // Connect to brickd
        // Don't use device before ipcon is connected

        // Get current temperature
        int temperature = t.getTemperature(); // Can throw com.tinkerforge.TimeoutException
        System.out.println("Temperature: " + temperature/100.0 + " °C");

        System.out.println("Press key to exit"); System.in.read();
        ipcon.disconnect();
    }
}

Callback

Download (ExampleCallback.java)

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
import com.tinkerforge.IPConnection;
import com.tinkerforge.BrickletThermocouple;

public class ExampleCallback {
    private static final String HOST = "localhost";
    private static final int PORT = 4223;

    // Change XYZ to the UID of your Thermocouple Bricklet
    private static final String UID = "XYZ";

    // Note: To make the example code cleaner we do not handle exceptions. Exceptions
    //       you might normally want to catch are described in the documentation
    public static void main(String args[]) throws Exception {
        IPConnection ipcon = new IPConnection(); // Create IP connection
        BrickletThermocouple t = new BrickletThermocouple(UID, ipcon); // Create device object

        ipcon.connect(HOST, PORT); // Connect to brickd
        // Don't use device before ipcon is connected

        // Add temperature listener
        t.addTemperatureListener(new BrickletThermocouple.TemperatureListener() {
            public void temperature(int temperature) {
                System.out.println("Temperature: " + temperature/100.0 + " °C");
            }
        });

        // Set period for temperature callback to 1s (1000ms)
        // Note: The temperature callback is only called every second
        //       if the temperature has changed since the last call!
        t.setTemperatureCallbackPeriod(1000);

        System.out.println("Press key to exit"); System.in.read();
        ipcon.disconnect();
    }
}

Threshold

Download (ExampleThreshold.java)

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
import com.tinkerforge.IPConnection;
import com.tinkerforge.BrickletThermocouple;

public class ExampleThreshold {
    private static final String HOST = "localhost";
    private static final int PORT = 4223;

    // Change XYZ to the UID of your Thermocouple Bricklet
    private static final String UID = "XYZ";

    // Note: To make the example code cleaner we do not handle exceptions. Exceptions
    //       you might normally want to catch are described in the documentation
    public static void main(String args[]) throws Exception {
        IPConnection ipcon = new IPConnection(); // Create IP connection
        BrickletThermocouple t = new BrickletThermocouple(UID, ipcon); // Create device object

        ipcon.connect(HOST, PORT); // Connect to brickd
        // Don't use device before ipcon is connected

        // Get threshold callbacks with a debounce time of 10 seconds (10000ms)
        t.setDebouncePeriod(10000);

        // Add temperature reached listener
        t.addTemperatureReachedListener(new BrickletThermocouple.TemperatureReachedListener() {
            public void temperatureReached(int temperature) {
                System.out.println("Temperature: " + temperature/100.0 + " °C");
            }
        });

        // Configure threshold for temperature "greater than 30 °C"
        t.setTemperatureCallbackThreshold('>', 30*100, 0);

        System.out.println("Press key to exit"); System.in.read();
        ipcon.disconnect();
    }
}

API

Generally, every method of the Java bindings that returns a value can throw a TimeoutException. This exception gets thrown if the device did not respond. If a cable based connection is used, it is unlikely that this exception gets thrown (assuming nobody unplugs the device). However, if a wireless connection is used, timeouts will occur if the distance to the device gets too big.

Beside the TimeoutException there is also a NotConnectedException that is thrown if a method needs to communicate with the device while the IP Connection is not connected.

Since Java does not support multiple return values and return by reference is not possible for primitive types, we use small classes that only consist of member variables. The member variables of the returned objects are described in the corresponding method descriptions.

The package for all Brick/Bricklet bindings and the IP Connection is com.tinkerforge.*

All methods listed below are thread-safe.

Basic Functions

class BrickletThermocouple(String uid, IPConnection ipcon)
Parameters:
  • uid – Type: String
  • ipcon – Type: IPConnection
Returns:
  • thermocouple – Type: BrickletThermocouple

Creates an object with the unique device ID uid:

BrickletThermocouple thermocouple = new BrickletThermocouple("YOUR_DEVICE_UID", ipcon);

This object can then be used after the IP Connection is connected.

int BrickletThermocouple.getTemperature()
Returns:
  • temperature – Type: int, Unit: 1/100 °C, Range: [-21000 to 180000]

Returns the temperature of the thermocouple.

If you want to get the temperature periodically, it is recommended to use the TemperatureListener listener and set the period with setTemperatureCallbackPeriod().

Advanced Functions

void BrickletThermocouple.setConfiguration(short averaging, short thermocoupleType, short filter)
Parameters:
  • averaging – Type: short, Range: See constants, Default: 16
  • thermocoupleType – Type: short, Range: See constants, Default: 3
  • filter – Type: short, Range: See constants, Default: 0

You can configure averaging size, thermocouple type and frequency filtering.

Available averaging sizes are 1, 2, 4, 8 and 16 samples.

As thermocouple type you can use B, E, J, K, N, R, S and T. If you have a different thermocouple or a custom thermocouple you can also use G8 and G32. With these types the returned value will not be in °C/100, it will be calculated by the following formulas:

  • G8: value = 8 * 1.6 * 2^17 * Vin
  • G32: value = 32 * 1.6 * 2^17 * Vin

where Vin is the thermocouple input voltage.

The frequency filter can be either configured to 50Hz or to 60Hz. You should configure it according to your utility frequency.

The conversion time depends on the averaging and filter configuration, it can be calculated as follows:

  • 60Hz: time = 82 + (samples - 1) * 16.67
  • 50Hz: time = 98 + (samples - 1) * 20

The following constants are available for this function:

For averaging:

  • BrickletThermocouple.AVERAGING_1 = 1
  • BrickletThermocouple.AVERAGING_2 = 2
  • BrickletThermocouple.AVERAGING_4 = 4
  • BrickletThermocouple.AVERAGING_8 = 8
  • BrickletThermocouple.AVERAGING_16 = 16

For thermocoupleType:

  • BrickletThermocouple.TYPE_B = 0
  • BrickletThermocouple.TYPE_E = 1
  • BrickletThermocouple.TYPE_J = 2
  • BrickletThermocouple.TYPE_K = 3
  • BrickletThermocouple.TYPE_N = 4
  • BrickletThermocouple.TYPE_R = 5
  • BrickletThermocouple.TYPE_S = 6
  • BrickletThermocouple.TYPE_T = 7
  • BrickletThermocouple.TYPE_G8 = 8
  • BrickletThermocouple.TYPE_G32 = 9

For filter:

  • BrickletThermocouple.FILTER_OPTION_50HZ = 0
  • BrickletThermocouple.FILTER_OPTION_60HZ = 1
BrickletThermocouple.Configuration BrickletThermocouple.getConfiguration()
Return Object:
  • averaging – Type: short, Range: See constants, Default: 16
  • thermocoupleType – Type: short, Range: See constants, Default: 3
  • filter – Type: short, Range: See constants, Default: 0

Returns the configuration as set by setConfiguration().

The following constants are available for this function:

For averaging:

  • BrickletThermocouple.AVERAGING_1 = 1
  • BrickletThermocouple.AVERAGING_2 = 2
  • BrickletThermocouple.AVERAGING_4 = 4
  • BrickletThermocouple.AVERAGING_8 = 8
  • BrickletThermocouple.AVERAGING_16 = 16

For thermocoupleType:

  • BrickletThermocouple.TYPE_B = 0
  • BrickletThermocouple.TYPE_E = 1
  • BrickletThermocouple.TYPE_J = 2
  • BrickletThermocouple.TYPE_K = 3
  • BrickletThermocouple.TYPE_N = 4
  • BrickletThermocouple.TYPE_R = 5
  • BrickletThermocouple.TYPE_S = 6
  • BrickletThermocouple.TYPE_T = 7
  • BrickletThermocouple.TYPE_G8 = 8
  • BrickletThermocouple.TYPE_G32 = 9

For filter:

  • BrickletThermocouple.FILTER_OPTION_50HZ = 0
  • BrickletThermocouple.FILTER_OPTION_60HZ = 1
BrickletThermocouple.ErrorState BrickletThermocouple.getErrorState()
Return Object:
  • overUnder – Type: boolean
  • openCircuit – Type: boolean

Returns the current error state. There are two possible errors:

  • Over/Under Voltage and
  • Open Circuit.

Over/Under Voltage happens for voltages below 0V or above 3.3V. In this case it is very likely that your thermocouple is defective. An Open Circuit error indicates that there is no thermocouple connected.

You can use the ErrorStateListener listener to automatically get triggered when the error state changes.

BrickletThermocouple.Identity BrickletThermocouple.getIdentity()
Return Object:
  • uid – Type: String, Length: up to 8
  • connectedUid – Type: String, Length: up to 8
  • position – Type: char, Range: ['a' to 'h', 'z']
  • hardwareVersion – Type: short[], Length: 3
    • 0: major – Type: short, Range: [0 to 255]
    • 1: minor – Type: short, Range: [0 to 255]
    • 2: revision – Type: short, Range: [0 to 255]
  • firmwareVersion – Type: short[], Length: 3
    • 0: major – Type: short, Range: [0 to 255]
    • 1: minor – Type: short, Range: [0 to 255]
    • 2: revision – Type: short, Range: [0 to 255]
  • deviceIdentifier – Type: int, Range: [0 to 216 - 1]

Returns the UID, the UID where the Bricklet is connected to, the position, the hardware and firmware version as well as the device identifier.

The position can be 'a', 'b', 'c', 'd', 'e', 'f', 'g' or 'h' (Bricklet Port). A Bricklet connected to an Isolator Bricklet is always at position 'z'.

The device identifier numbers can be found here. There is also a constant for the device identifier of this Bricklet.

Listener Configuration Functions

void BrickletThermocouple.setTemperatureCallbackPeriod(long period)
Parameters:
  • period – Type: long, Unit: 1 ms, Range: [0 to 232 - 1], Default: 0

Sets the period with which the TemperatureListener listener is triggered periodically. A value of 0 turns the listener off.

The TemperatureListener listener is only triggered if the temperature has changed since the last triggering.

long BrickletThermocouple.getTemperatureCallbackPeriod()
Returns:
  • period – Type: long, Unit: 1 ms, Range: [0 to 232 - 1], Default: 0

Returns the period as set by setTemperatureCallbackPeriod().

void BrickletThermocouple.setTemperatureCallbackThreshold(char option, int min, int max)
Parameters:
  • option – Type: char, Range: See constants, Default: 'x'
  • min – Type: int, Unit: 1/100 °C, Range: [-231 to 231 - 1], Default: 0
  • max – Type: int, Unit: 1/100 °C, Range: [-231 to 231 - 1], Default: 0

Sets the thresholds for the TemperatureReachedListener listener.

The following options are possible:

Option Description
'x' Listener is turned off
'o' Listener is triggered when the temperature is outside the min and max values
'i' Listener is triggered when the temperature is inside the min and max values
'<' Listener is triggered when the temperature is smaller than the min value (max is ignored)
'>' Listener is triggered when the temperature is greater than the min value (max is ignored)

The following constants are available for this function:

For option:

  • BrickletThermocouple.THRESHOLD_OPTION_OFF = 'x'
  • BrickletThermocouple.THRESHOLD_OPTION_OUTSIDE = 'o'
  • BrickletThermocouple.THRESHOLD_OPTION_INSIDE = 'i'
  • BrickletThermocouple.THRESHOLD_OPTION_SMALLER = '<'
  • BrickletThermocouple.THRESHOLD_OPTION_GREATER = '>'
BrickletThermocouple.TemperatureCallbackThreshold BrickletThermocouple.getTemperatureCallbackThreshold()
Return Object:
  • option – Type: char, Range: See constants, Default: 'x'
  • min – Type: int, Unit: 1/100 °C, Range: [-231 to 231 - 1], Default: 0
  • max – Type: int, Unit: 1/100 °C, Range: [-231 to 231 - 1], Default: 0

Returns the threshold as set by setTemperatureCallbackThreshold().

The following constants are available for this function:

For option:

  • BrickletThermocouple.THRESHOLD_OPTION_OFF = 'x'
  • BrickletThermocouple.THRESHOLD_OPTION_OUTSIDE = 'o'
  • BrickletThermocouple.THRESHOLD_OPTION_INSIDE = 'i'
  • BrickletThermocouple.THRESHOLD_OPTION_SMALLER = '<'
  • BrickletThermocouple.THRESHOLD_OPTION_GREATER = '>'
void BrickletThermocouple.setDebouncePeriod(long debounce)
Parameters:
  • debounce – Type: long, Unit: 1 ms, Range: [0 to 232 - 1], Default: 100

Sets the period with which the threshold listener

is triggered, if the threshold

keeps being reached.

long BrickletThermocouple.getDebouncePeriod()
Returns:
  • debounce – Type: long, Unit: 1 ms, Range: [0 to 232 - 1], Default: 100

Returns the debounce period as set by setDebouncePeriod().

Listeners

Listeners can be registered to receive time critical or recurring data from the device. The registration is done with add*Listener() functions of the device object.

The parameter is a listener class object, for example:

device.addExampleListener(new BrickletThermocouple.ExampleListener() {
    public void property(int value) {
        System.out.println("Value: " + value);
    }
});

The available listener classes with inherent methods to be overwritten are described below. It is possible to add several listeners and to remove them with the corresponding remove*Listener() function.

Note

Using listeners for recurring events is always preferred compared to using getters. It will use less USB bandwidth and the latency will be a lot better, since there is no round trip time.

class BrickletThermocouple.TemperatureListener()

This listener can be added with the addTemperatureListener() function. An added listener can be removed with the removeTemperatureListener() function.

void temperature(int temperature)
Parameters:
  • temperature – Type: int, Unit: 1/100 °C, Range: [-21000 to 180000]

This listener is triggered periodically with the period that is set by setTemperatureCallbackPeriod(). The parameter is the temperature of the thermocouple.

The TemperatureListener listener is only triggered if the temperature has changed since the last triggering.

class BrickletThermocouple.TemperatureReachedListener()

This listener can be added with the addTemperatureReachedListener() function. An added listener can be removed with the removeTemperatureReachedListener() function.

void temperatureReached(int temperature)
Parameters:
  • temperature – Type: int, Unit: 1/100 °C, Range: [-21000 to 180000]

This listener is triggered when the threshold as set by setTemperatureCallbackThreshold() is reached. The parameter is the temperature of the thermocouple.

If the threshold keeps being reached, the listener is triggered periodically with the period as set by setDebouncePeriod().

class BrickletThermocouple.ErrorStateListener()

This listener can be added with the addErrorStateListener() function. An added listener can be removed with the removeErrorStateListener() function.

void errorState(boolean overUnder, boolean openCircuit)
Parameters:
  • overUnder – Type: boolean
  • openCircuit – Type: boolean

This Listener is triggered every time the error state changes (see getErrorState()).

Virtual Functions

Virtual functions don't communicate with the device itself, but operate only on the API bindings device object. They can be called without the corresponding IP Connection object being connected.

short[] BrickletThermocouple.getAPIVersion()
Return Object:
  • apiVersion – Type: short[], Length: 3
    • 0: major – Type: short, Range: [0 to 255]
    • 1: minor – Type: short, Range: [0 to 255]
    • 2: revision – Type: short, Range: [0 to 255]

Returns the version of the API definition implemented by this API bindings. This is neither the release version of this API bindings nor does it tell you anything about the represented Brick or Bricklet.

boolean BrickletThermocouple.getResponseExpected(byte functionId)
Parameters:
  • functionId – Type: byte, Range: See constants
Returns:
  • responseExpected – Type: boolean

Returns the response expected flag for the function specified by the function ID parameter. It is true if the function is expected to send a response, false otherwise.

For getter functions this is enabled by default and cannot be disabled, because those functions will always send a response. For listener configuration functions it is enabled by default too, but can be disabled by setResponseExpected(). For setter functions it is disabled by default and can be enabled.

Enabling the response expected flag for a setter function allows to detect timeouts and other error conditions calls of this setter as well. The device will then send a response for this purpose. If this flag is disabled for a setter function then no response is sent and errors are silently ignored, because they cannot be detected.

The following constants are available for this function:

For functionId:

  • BrickletThermocouple.FUNCTION_SET_TEMPERATURE_CALLBACK_PERIOD = 2
  • BrickletThermocouple.FUNCTION_SET_TEMPERATURE_CALLBACK_THRESHOLD = 4
  • BrickletThermocouple.FUNCTION_SET_DEBOUNCE_PERIOD = 6
  • BrickletThermocouple.FUNCTION_SET_CONFIGURATION = 10
void BrickletThermocouple.setResponseExpected(byte functionId, boolean responseExpected)
Parameters:
  • functionId – Type: byte, Range: See constants
  • responseExpected – Type: boolean

Changes the response expected flag of the function specified by the function ID parameter. This flag can only be changed for setter (default value: false) and listener configuration functions (default value: true). For getter functions it is always enabled.

Enabling the response expected flag for a setter function allows to detect timeouts and other error conditions calls of this setter as well. The device will then send a response for this purpose. If this flag is disabled for a setter function then no response is sent and errors are silently ignored, because they cannot be detected.

The following constants are available for this function:

For functionId:

  • BrickletThermocouple.FUNCTION_SET_TEMPERATURE_CALLBACK_PERIOD = 2
  • BrickletThermocouple.FUNCTION_SET_TEMPERATURE_CALLBACK_THRESHOLD = 4
  • BrickletThermocouple.FUNCTION_SET_DEBOUNCE_PERIOD = 6
  • BrickletThermocouple.FUNCTION_SET_CONFIGURATION = 10
void BrickletThermocouple.setResponseExpectedAll(boolean responseExpected)
Parameters:
  • responseExpected – Type: boolean

Changes the response expected flag for all setter and listener configuration functions of this device at once.

Constants

int BrickletThermocouple.DEVICE_IDENTIFIER

This constant is used to identify a Thermocouple Bricklet.

The getIdentity() function and the IPConnection.EnumerateListener listener of the IP Connection have a deviceIdentifier parameter to specify the Brick's or Bricklet's type.

String BrickletThermocouple.DEVICE_DISPLAY_NAME

This constant represents the human readable name of a Thermocouple Bricklet.