This is the description of the C/C++ API bindings for the Industrial Dual 0-20mA Bricklet. General information and technical specifications for the Industrial Dual 0-20mA Bricklet are summarized in its hardware description.
An installation guide for the C/C++ API bindings is part of their general description.
The example code below is Public Domain (CC0 1.0).
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 | #include <stdio.h>
#include "ip_connection.h"
#include "bricklet_industrial_dual_0_20ma.h"
#define HOST "localhost"
#define PORT 4223
#define UID "XYZ" // Change XYZ to the UID of your Industrial Dual 0-20mA Bricklet
int main(void) {
// Create IP connection
IPConnection ipcon;
ipcon_create(&ipcon);
// Create device object
IndustrialDual020mA id020;
industrial_dual_0_20ma_create(&id020, UID, &ipcon);
// Connect to brickd
if(ipcon_connect(&ipcon, HOST, PORT) < 0) {
fprintf(stderr, "Could not connect\n");
return 1;
}
// Don't use device before ipcon is connected
// Get current current from sensor 1
int32_t current;
if(industrial_dual_0_20ma_get_current(&id020, 1, ¤t) < 0) {
fprintf(stderr, "Could not get current from sensor 1, probably timeout\n");
return 1;
}
printf("Current (Sensor 1): %f mA\n", current/1000000.0);
printf("Press key to exit\n");
getchar();
industrial_dual_0_20ma_destroy(&id020);
ipcon_destroy(&ipcon); // Calls ipcon_disconnect internally
return 0;
}
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 | #include <stdio.h>
#include "ip_connection.h"
#include "bricklet_industrial_dual_0_20ma.h"
#define HOST "localhost"
#define PORT 4223
#define UID "XYZ" // Change XYZ to the UID of your Industrial Dual 0-20mA Bricklet
// Callback function for current callback
void cb_current(uint8_t sensor, int32_t current, void *user_data) {
(void)user_data; // avoid unused parameter warning
printf("Sensor: %u\n", sensor);
printf("Current: %f mA\n", current/1000000.0);
printf("\n");
}
int main(void) {
// Create IP connection
IPConnection ipcon;
ipcon_create(&ipcon);
// Create device object
IndustrialDual020mA id020;
industrial_dual_0_20ma_create(&id020, UID, &ipcon);
// Connect to brickd
if(ipcon_connect(&ipcon, HOST, PORT) < 0) {
fprintf(stderr, "Could not connect\n");
return 1;
}
// Don't use device before ipcon is connected
// Register current callback to function cb_current
industrial_dual_0_20ma_register_callback(&id020,
INDUSTRIAL_DUAL_0_20MA_CALLBACK_CURRENT,
(void (*)(void))cb_current,
NULL);
// Set period for current (sensor 1) callback to 1s (1000ms)
// Note: The current (sensor 1) callback is only called every second
// if the current (sensor 1) has changed since the last call!
industrial_dual_0_20ma_set_current_callback_period(&id020, 1, 1000);
printf("Press key to exit\n");
getchar();
industrial_dual_0_20ma_destroy(&id020);
ipcon_destroy(&ipcon); // Calls ipcon_disconnect internally
return 0;
}
|
Download (example_threshold.c)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 | #include <stdio.h>
#include "ip_connection.h"
#include "bricklet_industrial_dual_0_20ma.h"
#define HOST "localhost"
#define PORT 4223
#define UID "XYZ" // Change XYZ to the UID of your Industrial Dual 0-20mA Bricklet
// Callback function for current reached callback
void cb_current_reached(uint8_t sensor, int32_t current, void *user_data) {
(void)user_data; // avoid unused parameter warning
printf("Sensor: %u\n", sensor);
printf("Current: %f mA\n", current/1000000.0);
printf("\n");
}
int main(void) {
// Create IP connection
IPConnection ipcon;
ipcon_create(&ipcon);
// Create device object
IndustrialDual020mA id020;
industrial_dual_0_20ma_create(&id020, UID, &ipcon);
// Connect to brickd
if(ipcon_connect(&ipcon, HOST, PORT) < 0) {
fprintf(stderr, "Could not connect\n");
return 1;
}
// Don't use device before ipcon is connected
// Get threshold callbacks with a debounce time of 10 seconds (10000ms)
industrial_dual_0_20ma_set_debounce_period(&id020, 10000);
// Register current reached callback to function cb_current_reached
industrial_dual_0_20ma_register_callback(&id020,
INDUSTRIAL_DUAL_0_20MA_CALLBACK_CURRENT_REACHED,
(void (*)(void))cb_current_reached,
NULL);
// Configure threshold for current (sensor 1) "greater than 10 mA"
industrial_dual_0_20ma_set_current_callback_threshold(&id020, 1, '>', 10*1000000, 0);
printf("Press key to exit\n");
getchar();
industrial_dual_0_20ma_destroy(&id020);
ipcon_destroy(&ipcon); // Calls ipcon_disconnect internally
return 0;
}
|
Most functions of the C/C++ bindings return an error code (e_code
).
Data returned from the device, when a getter is called,
is handled via output parameters. These parameters are labeled with the
ret_
prefix.
Possible error codes are:
as defined in ip_connection.h
.
All functions listed below are thread-safe.
industrial_dual_0_20ma_create
(IndustrialDual020mA *industrial_dual_0_20ma, const char *uid, IPConnection *ipcon)¶Parameters: |
|
---|
Creates the device object industrial_dual_0_20ma
with the unique device ID uid
and adds
it to the IPConnection ipcon
:
IndustrialDual020mA industrial_dual_0_20ma;
industrial_dual_0_20ma_create(&industrial_dual_0_20ma, "YOUR_DEVICE_UID", &ipcon);
This device object can be used after the IP connection has been connected.
industrial_dual_0_20ma_destroy
(IndustrialDual020mA *industrial_dual_0_20ma)¶Parameters: |
|
---|
Removes the device object industrial_dual_0_20ma
from its IPConnection and destroys it.
The device object cannot be used anymore afterwards.
industrial_dual_0_20ma_get_current
(IndustrialDual020mA *industrial_dual_0_20ma, uint8_t sensor, int32_t *ret_current)¶Parameters: |
|
---|---|
Output Parameters: |
|
Returns: |
|
Returns the current of the specified sensor.
It is possible to detect if an IEC 60381-1 compatible sensor is connected and if it works properly.
If the returned current is below 4mA, there is likely no sensor connected or the sensor may be defect. If the returned current is over 20mA, there might be a short circuit or the sensor may be defect.
If you want to get the current periodically, it is recommended to use the
INDUSTRIAL_DUAL_0_20MA_CALLBACK_CURRENT
callback and set the period with
industrial_dual_0_20ma_set_current_callback_period()
.
industrial_dual_0_20ma_set_sample_rate
(IndustrialDual020mA *industrial_dual_0_20ma, uint8_t rate)¶Parameters: |
|
---|---|
Returns: |
|
Sets the sample rate to either 240, 60, 15 or 4 samples per second. The resolution for the rates is 12, 14, 16 and 18 bit respectively.
Value | Description |
---|---|
0 | 240 samples per second, 12 bit resolution |
1 | 60 samples per second, 14 bit resolution |
2 | 15 samples per second, 16 bit resolution |
3 | 4 samples per second, 18 bit resolution |
The following constants are available for this function:
For rate:
industrial_dual_0_20ma_get_sample_rate
(IndustrialDual020mA *industrial_dual_0_20ma, uint8_t *ret_rate)¶Parameters: |
|
---|---|
Output Parameters: |
|
Returns: |
|
Returns the sample rate as set by industrial_dual_0_20ma_set_sample_rate()
.
The following constants are available for this function:
For ret_rate:
industrial_dual_0_20ma_get_identity
(IndustrialDual020mA *industrial_dual_0_20ma, char ret_uid[8], char ret_connected_uid[8], char *ret_position, uint8_t ret_hardware_version[3], uint8_t ret_firmware_version[3], uint16_t *ret_device_identifier)¶Parameters: |
|
---|---|
Output Parameters: |
|
Returns: |
|
Returns the UID, the UID where the Bricklet is connected to, the position, the hardware and firmware version as well as the device identifier.
The position can be 'a', 'b', 'c', 'd', 'e', 'f', 'g' or 'h' (Bricklet Port). A Bricklet connected to an Isolator Bricklet is always at position 'z'.
The device identifier numbers can be found here. There is also a constant for the device identifier of this Bricklet.
industrial_dual_0_20ma_register_callback
(IndustrialDual020mA *industrial_dual_0_20ma, int16_t callback_id, void (*function)(void), void *user_data)¶Parameters: |
|
---|
Registers the given function
with the given callback_id
. The
user_data
will be passed as the last parameter to the function
.
The available callback IDs with corresponding function signatures are listed below.
industrial_dual_0_20ma_set_current_callback_period
(IndustrialDual020mA *industrial_dual_0_20ma, uint8_t sensor, uint32_t period)¶Parameters: |
|
---|---|
Returns: |
|
Sets the period with which the INDUSTRIAL_DUAL_0_20MA_CALLBACK_CURRENT
callback is triggered
periodically for the given sensor. A value of 0 turns the callback off.
The INDUSTRIAL_DUAL_0_20MA_CALLBACK_CURRENT
callback is only triggered if the current has changed since the
last triggering.
industrial_dual_0_20ma_get_current_callback_period
(IndustrialDual020mA *industrial_dual_0_20ma, uint8_t sensor, uint32_t *ret_period)¶Parameters: |
|
---|---|
Output Parameters: |
|
Returns: |
|
Returns the period as set by industrial_dual_0_20ma_set_current_callback_period()
.
industrial_dual_0_20ma_set_current_callback_threshold
(IndustrialDual020mA *industrial_dual_0_20ma, uint8_t sensor, char option, int32_t min, int32_t max)¶Parameters: |
|
---|---|
Returns: |
|
Sets the thresholds for the INDUSTRIAL_DUAL_0_20MA_CALLBACK_CURRENT_REACHED
callback for the given
sensor.
The following options are possible:
Option | Description |
---|---|
'x' | Callback is turned off |
'o' | Callback is triggered when the current is outside the min and max values |
'i' | Callback is triggered when the current is inside the min and max values |
'<' | Callback is triggered when the current is smaller than the min value (max is ignored) |
'>' | Callback is triggered when the current is greater than the min value (max is ignored) |
The following constants are available for this function:
For option:
industrial_dual_0_20ma_get_current_callback_threshold
(IndustrialDual020mA *industrial_dual_0_20ma, uint8_t sensor, char *ret_option, int32_t *ret_min, int32_t *ret_max)¶Parameters: |
|
---|---|
Output Parameters: |
|
Returns: |
|
Returns the threshold as set by industrial_dual_0_20ma_set_current_callback_threshold()
.
The following constants are available for this function:
For ret_option:
industrial_dual_0_20ma_set_debounce_period
(IndustrialDual020mA *industrial_dual_0_20ma, uint32_t debounce)¶Parameters: |
|
---|---|
Returns: |
|
Sets the period with which the threshold callback
is triggered, if the threshold
keeps being reached.
industrial_dual_0_20ma_get_debounce_period
(IndustrialDual020mA *industrial_dual_0_20ma, uint32_t *ret_debounce)¶Parameters: |
|
---|---|
Output Parameters: |
|
Returns: |
|
Returns the debounce period as set by industrial_dual_0_20ma_set_debounce_period()
.
Callbacks can be registered to receive time critical or recurring data from the
device. The registration is done with the industrial_dual_0_20ma_register_callback()
function:
void my_callback(int value, void *user_data) { printf("Value: %d\n", value); } industrial_dual_0_20ma_register_callback(&industrial_dual_0_20ma, INDUSTRIAL_DUAL_0_20MA_CALLBACK_EXAMPLE, (void (*)(void))my_callback, NULL);
The available constants with corresponding function signatures are described below.
Note
Using callbacks for recurring events is always preferred compared to using getters. It will use less USB bandwidth and the latency will be a lot better, since there is no round trip time.
INDUSTRIAL_DUAL_0_20MA_CALLBACK_CURRENT
¶void callback(uint8_t sensor, int32_t current, void *user_data)
Callback Parameters: |
|
---|
This callback is triggered periodically with the period that is set by
industrial_dual_0_20ma_set_current_callback_period()
. The parameter is the current of the
sensor.
The INDUSTRIAL_DUAL_0_20MA_CALLBACK_CURRENT
callback is only triggered if the current has changed since the
last triggering.
INDUSTRIAL_DUAL_0_20MA_CALLBACK_CURRENT_REACHED
¶void callback(uint8_t sensor, int32_t current, void *user_data)
Callback Parameters: |
|
---|
This callback is triggered when the threshold as set by
industrial_dual_0_20ma_set_current_callback_threshold()
is reached.
The parameter is the current of the sensor.
If the threshold keeps being reached, the callback is triggered periodically
with the period as set by industrial_dual_0_20ma_set_debounce_period()
.
Virtual functions don't communicate with the device itself, but operate only on the API bindings device object. They can be called without the corresponding IP Connection object being connected.
industrial_dual_0_20ma_get_api_version
(IndustrialDual020mA *industrial_dual_0_20ma, uint8_t ret_api_version[3])¶Parameters: |
|
---|---|
Output Parameters: |
|
Returns: |
|
Returns the version of the API definition implemented by this API bindings. This is neither the release version of this API bindings nor does it tell you anything about the represented Brick or Bricklet.
industrial_dual_0_20ma_get_response_expected
(IndustrialDual020mA *industrial_dual_0_20ma, uint8_t function_id, bool *ret_response_expected)¶Parameters: |
|
---|---|
Output Parameters: |
|
Returns: |
|
Returns the response expected flag for the function specified by the function ID parameter. It is true if the function is expected to send a response, false otherwise.
For getter functions this is enabled by default and cannot be disabled,
because those functions will always send a response. For callback configuration
functions it is enabled by default too, but can be disabled by
industrial_dual_0_20ma_set_response_expected()
. For setter functions it is disabled by default
and can be enabled.
Enabling the response expected flag for a setter function allows to detect timeouts and other error conditions calls of this setter as well. The device will then send a response for this purpose. If this flag is disabled for a setter function then no response is sent and errors are silently ignored, because they cannot be detected.
The following constants are available for this function:
For function_id:
industrial_dual_0_20ma_set_response_expected
(IndustrialDual020mA *industrial_dual_0_20ma, uint8_t function_id, bool response_expected)¶Parameters: |
|
---|---|
Returns: |
|
Changes the response expected flag of the function specified by the function ID parameter. This flag can only be changed for setter (default value: false) and callback configuration functions (default value: true). For getter functions it is always enabled.
Enabling the response expected flag for a setter function allows to detect timeouts and other error conditions calls of this setter as well. The device will then send a response for this purpose. If this flag is disabled for a setter function then no response is sent and errors are silently ignored, because they cannot be detected.
The following constants are available for this function:
For function_id:
industrial_dual_0_20ma_set_response_expected_all
(IndustrialDual020mA *industrial_dual_0_20ma, bool response_expected)¶Parameters: |
|
---|---|
Returns: |
|
Changes the response expected flag for all setter and callback configuration functions of this device at once.
INDUSTRIAL_DUAL_0_20MA_DEVICE_IDENTIFIER
¶This constant is used to identify a Industrial Dual 0-20mA Bricklet.
The industrial_dual_0_20ma_get_identity()
function and the IPCON_CALLBACK_ENUMERATE
callback of the IP Connection have a device_identifier
parameter to specify
the Brick's or Bricklet's type.
INDUSTRIAL_DUAL_0_20MA_DEVICE_DISPLAY_NAME
¶This constant represents the human readable name of a Industrial Dual 0-20mA Bricklet.