This is the description of the C/C++ API bindings for the RS232 Bricklet. General information and technical specifications for the RS232 Bricklet are summarized in its hardware description.
An installation guide for the C/C++ API bindings is part of their general description.
The example code below is Public Domain (CC0 1.0).
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 | #include <stdio.h>
// For this example connect the RX1 and TX pin to receive the send message
#include "ip_connection.h"
#include "bricklet_rs232.h"
#define HOST "localhost"
#define PORT 4223
#define UID "XYZ" // Change XYZ to the UID of your RS232 Bricklet
// Callback function for read callback
void cb_read(char message[60], uint8_t length, void *user_data) {
(void)user_data; // avoid unused parameter warning
// Assume that the message consists of ASCII characters and
// convert it from an array of chars to a NUL-terminated string
char buffer[61]; // +1 for the NUL-terminator
memcpy(buffer, message, length);
buffer[length] = '\0';
printf("Message (Length: %d): \"%s\"\n", length, buffer);
}
int main(void) {
// Create IP connection
IPConnection ipcon;
ipcon_create(&ipcon);
// Create device object
RS232 rs232;
rs232_create(&rs232, UID, &ipcon);
// Connect to brickd
if(ipcon_connect(&ipcon, HOST, PORT) < 0) {
fprintf(stderr, "Could not connect\n");
return 1;
}
// Don't use device before ipcon is connected
// Register read callback to function cb_read
rs232_register_callback(&rs232,
RS232_CALLBACK_READ,
(void (*)(void))cb_read,
NULL);
// Enable read callback
rs232_enable_read_callback(&rs232);
// Write "test" string
char buffer[60] = "test";
uint8_t written;
rs232_write(&rs232, buffer, 4, &written);
printf("Press key to exit\n");
getchar();
rs232_destroy(&rs232);
ipcon_destroy(&ipcon); // Calls ipcon_disconnect internally
return 0;
}
|
Most functions of the C/C++ bindings return an error code (e_code
).
Data returned from the device, when a getter is called,
is handled via output parameters. These parameters are labeled with the
ret_
prefix.
Possible error codes are:
as defined in ip_connection.h
.
All functions listed below are thread-safe.
rs232_create
(RS232 *rs232, const char *uid, IPConnection *ipcon)¶Parameters: |
|
---|
Creates the device object rs232
with the unique device ID uid
and adds
it to the IPConnection ipcon
:
RS232 rs232;
rs232_create(&rs232, "YOUR_DEVICE_UID", &ipcon);
This device object can be used after the IP connection has been connected.
rs232_destroy
(RS232 *rs232)¶Parameters: |
|
---|
Removes the device object rs232
from its IPConnection and destroys it.
The device object cannot be used anymore afterwards.
rs232_write
(RS232 *rs232, char message[60], uint8_t length, uint8_t *ret_written)¶Parameters: |
|
---|---|
Output Parameters: |
|
Returns: |
|
Writes a string of up to 60 characters to the RS232 interface. The string can be binary data, ASCII or similar is not necessary.
The length of the string has to be given as an additional parameter.
The return value is the number of bytes that could be written.
See rs232_set_configuration()
for configuration possibilities
regarding baudrate, parity and so on.
rs232_read
(RS232 *rs232, char ret_message[60], uint8_t *ret_length)¶Parameters: |
|
---|---|
Output Parameters: |
|
Returns: |
|
Returns the currently buffered message. The maximum length of message is 60. If the returned length is 0, no new data was available.
Instead of polling with this function, you can also use
callbacks. See rs232_enable_read_callback()
and RS232_CALLBACK_READ
callback.
rs232_set_configuration
(RS232 *rs232, uint8_t baudrate, uint8_t parity, uint8_t stopbits, uint8_t wordlength, uint8_t hardware_flowcontrol, uint8_t software_flowcontrol)¶Parameters: |
|
---|---|
Returns: |
|
Sets the configuration for the RS232 communication.
Hard-/Software flow control can either be on or off but not both simultaneously on.
The following constants are available for this function:
For baudrate:
For parity:
For stopbits:
For wordlength:
For hardware_flowcontrol:
For software_flowcontrol:
rs232_get_configuration
(RS232 *rs232, uint8_t *ret_baudrate, uint8_t *ret_parity, uint8_t *ret_stopbits, uint8_t *ret_wordlength, uint8_t *ret_hardware_flowcontrol, uint8_t *ret_software_flowcontrol)¶Parameters: |
|
---|---|
Output Parameters: |
|
Returns: |
|
Returns the configuration as set by rs232_set_configuration()
.
The following constants are available for this function:
For ret_baudrate:
For ret_parity:
For ret_stopbits:
For ret_wordlength:
For ret_hardware_flowcontrol:
For ret_software_flowcontrol:
rs232_set_break_condition
(RS232 *rs232, uint16_t break_time)¶Parameters: |
|
---|---|
Returns: |
|
Sets a break condition (the TX output is forced to a logic 0 state). The parameter sets the hold-time of the break condition.
New in version 2.0.2 (Plugin).
rs232_read_frame
(RS232 *rs232, char ret_message[60], uint8_t *ret_length)¶Parameters: |
|
---|---|
Output Parameters: |
|
Returns: |
|
Returns up to one frame of bytes from the read buffer.
The frame size is configured with rs232_set_frame_readable_callback_configuration()
.
If the returned length is 0, no new data was available.
New in version 2.0.4 (Plugin).
rs232_get_identity
(RS232 *rs232, char ret_uid[8], char ret_connected_uid[8], char *ret_position, uint8_t ret_hardware_version[3], uint8_t ret_firmware_version[3], uint16_t *ret_device_identifier)¶Parameters: |
|
---|---|
Output Parameters: |
|
Returns: |
|
Returns the UID, the UID where the Bricklet is connected to, the position, the hardware and firmware version as well as the device identifier.
The position can be 'a', 'b', 'c', 'd', 'e', 'f', 'g' or 'h' (Bricklet Port). A Bricklet connected to an Isolator Bricklet is always at position 'z'.
The device identifier numbers can be found here. There is also a constant for the device identifier of this Bricklet.
rs232_register_callback
(RS232 *rs232, int16_t callback_id, void (*function)(void), void *user_data)¶Parameters: |
|
---|
Registers the given function
with the given callback_id
. The
user_data
will be passed as the last parameter to the function
.
The available callback IDs with corresponding function signatures are listed below.
rs232_enable_read_callback
(RS232 *rs232)¶Parameters: |
|
---|---|
Returns: |
|
Enables the RS232_CALLBACK_READ
callback. This will disable the RS232_CALLBACK_FRAME_READABLE
callback.
By default the callback is disabled.
rs232_disable_read_callback
(RS232 *rs232)¶Parameters: |
|
---|---|
Returns: |
|
Disables the RS232_CALLBACK_READ
callback.
By default the callback is disabled.
rs232_is_read_callback_enabled
(RS232 *rs232, bool *ret_enabled)¶Parameters: |
|
---|---|
Output Parameters: |
|
Returns: |
|
Returns true if the RS232_CALLBACK_READ
callback is enabled,
false otherwise.
rs232_set_frame_readable_callback_configuration
(RS232 *rs232, uint8_t frame_size)¶Parameters: |
|
---|---|
Returns: |
|
Configures the RS232_CALLBACK_FRAME_READABLE
callback. The frame size is the number of bytes, that have to be readable to trigger the callback.
A frame size of 0 disables the callback. A frame size greater than 0 enables the callback and disables the RS232_CALLBACK_READ
callback.
By default the callback is disabled.
New in version 2.0.4 (Plugin).
rs232_get_frame_readable_callback_configuration
(RS232 *rs232, uint8_t *ret_frame_size)¶Parameters: |
|
---|---|
Output Parameters: |
|
Returns: |
|
Returns the callback configuration as set by rs232_set_frame_readable_callback_configuration()
.
New in version 2.0.4 (Plugin).
Callbacks can be registered to receive time critical or recurring data from the
device. The registration is done with the rs232_register_callback()
function:
void my_callback(int value, void *user_data) { printf("Value: %d\n", value); } rs232_register_callback(&rs232, RS232_CALLBACK_EXAMPLE, (void (*)(void))my_callback, NULL);
The available constants with corresponding function signatures are described below.
Note
Using callbacks for recurring events is always preferred compared to using getters. It will use less USB bandwidth and the latency will be a lot better, since there is no round trip time.
RS232_CALLBACK_READ
¶void callback(char message[60], uint8_t length, void *user_data)
Callback Parameters: |
|
---|
This callback is called if new data is available. The message has a maximum size of 60 characters. The actual length of the message is given in addition.
To enable this callback, use rs232_enable_read_callback()
.
RS232_CALLBACK_ERROR
¶void callback(uint8_t error, void *user_data)
Callback Parameters: |
|
---|
This callback is called if an error occurs. Possible errors are overrun, parity or framing error.
The following constants are available for this function:
For error:
New in version 2.0.1 (Plugin).
RS232_CALLBACK_FRAME_READABLE
¶void callback(uint8_t frame_count, void *user_data)
Callback Parameters: |
|
---|
This callback is called if at least one frame of data is readable. The frame size is configured with rs232_set_frame_readable_callback_configuration()
.
The frame count parameter is the number of frames that can be read.
This callback is triggered only once until rs232_read()
or rs232_read_frame()
is called. This means, that if you have configured a frame size of X bytes,
you can read exactly X bytes using the rs232_read_frame()
function, every time the callback triggers without checking the frame count parameter.
New in version 2.0.4 (Plugin).
Virtual functions don't communicate with the device itself, but operate only on the API bindings device object. They can be called without the corresponding IP Connection object being connected.
rs232_get_api_version
(RS232 *rs232, uint8_t ret_api_version[3])¶Parameters: |
|
---|---|
Output Parameters: |
|
Returns: |
|
Returns the version of the API definition implemented by this API bindings. This is neither the release version of this API bindings nor does it tell you anything about the represented Brick or Bricklet.
rs232_get_response_expected
(RS232 *rs232, uint8_t function_id, bool *ret_response_expected)¶Parameters: |
|
---|---|
Output Parameters: |
|
Returns: |
|
Returns the response expected flag for the function specified by the function ID parameter. It is true if the function is expected to send a response, false otherwise.
For getter functions this is enabled by default and cannot be disabled,
because those functions will always send a response. For callback configuration
functions it is enabled by default too, but can be disabled by
rs232_set_response_expected()
. For setter functions it is disabled by default
and can be enabled.
Enabling the response expected flag for a setter function allows to detect timeouts and other error conditions calls of this setter as well. The device will then send a response for this purpose. If this flag is disabled for a setter function then no response is sent and errors are silently ignored, because they cannot be detected.
The following constants are available for this function:
For function_id:
rs232_set_response_expected
(RS232 *rs232, uint8_t function_id, bool response_expected)¶Parameters: |
|
---|---|
Returns: |
|
Changes the response expected flag of the function specified by the function ID parameter. This flag can only be changed for setter (default value: false) and callback configuration functions (default value: true). For getter functions it is always enabled.
Enabling the response expected flag for a setter function allows to detect timeouts and other error conditions calls of this setter as well. The device will then send a response for this purpose. If this flag is disabled for a setter function then no response is sent and errors are silently ignored, because they cannot be detected.
The following constants are available for this function:
For function_id:
rs232_set_response_expected_all
(RS232 *rs232, bool response_expected)¶Parameters: |
|
---|---|
Returns: |
|
Changes the response expected flag for all setter and callback configuration functions of this device at once.
RS232_DEVICE_IDENTIFIER
¶This constant is used to identify a RS232 Bricklet.
The rs232_get_identity()
function and the IPCON_CALLBACK_ENUMERATE
callback of the IP Connection have a device_identifier
parameter to specify
the Brick's or Bricklet's type.
RS232_DEVICE_DISPLAY_NAME
¶This constant represents the human readable name of a RS232 Bricklet.