Dies ist die Beschreibung der Rust API Bindings für das Thermal Imaging Bricklet. Allgemeine Informationen über die Funktionen und technischen Spezifikationen des Thermal Imaging Bricklet sind in dessen Hardware Beschreibung zusammengefasst.
Eine Installationanleitung für die Rust API Bindings ist Teil deren allgemeine Beschreibung. Zusätzliche Dokumentation findet sich auf docs.rs.
Der folgende Beispielcode ist Public Domain (CC0 1.0).
Download (example_callback.rs)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 | use std::{error::Error, io, thread};
use tinkerforge::{ip_connection::IpConnection, thermal_imaging_bricklet::*};
const HOST: &str = "localhost";
const PORT: u16 = 4223;
const UID: &str = "XYZ"; // Change XYZ to the UID of your Thermal Imaging Bricklet.
fn main() -> Result<(), Box<dyn Error>> {
let ipcon = IpConnection::new(); // Create IP connection.
let ti = ThermalImagingBricklet::new(UID, &ipcon); // Create device object.
ipcon.connect((HOST, PORT)).recv()??; // Connect to brickd.
// Don't use device before ipcon is connected.
let high_contrast_image_receiver = ti.get_high_contrast_image_callback_receiver();
// Spawn thread to handle received callback messages.
// This thread ends when the `ti` object
// is dropped, so there is no need for manual cleanup.
thread::spawn(move || {
for high_contrast_image in high_contrast_image_receiver {
match high_contrast_image {
Some((_payload, _result)) => {
// _payload is an array of size 80*60 with a 8 bit grey value for each element
}
None => println!("Stream was out of sync."),
}
}
});
// Enable high contrast image transfer for callback
ti.set_image_transfer_config(THERMAL_IMAGING_BRICKLET_IMAGE_TRANSFER_CALLBACK_HIGH_CONTRAST_IMAGE);
println!("Press enter to exit.");
let mut _input = String::new();
io::stdin().read_line(&mut _input)?;
ipcon.disconnect();
Ok(())
}
|
Um eine nicht-blockierende Verwendung zu erlauben, gibt fast jede Funktion der Rust-Bindings einen Wrapper um einen mpsc::Receiver zurück. Um das Ergebnis eines Funktionsaufrufs zu erhalten und zu blockieren, bis das Gerät die Anfrage verarbeitet hat, können die recv-Varianten des Receivers verwendet werden. Diese geben entweder das vom Gerät gesendete Ergebnis, oder einen aufgetretenen Fehler zurück.
Funktionen die direkt ein Result zurückgeben, blockieren bis das Gerät die Anfrage verarbeitet hat.
Alle folgend aufgelisteten Funktionen sind Thread-sicher, diese, die einen Receiver zurückgeben, sind Lock-frei.
ThermalImagingBricklet::
new
(uid: &str, ip_connection: &IpConnection) → ThermalImagingBricklet¶Parameter: |
|
---|---|
Rückgabe: |
|
Erzeugt ein neues ThermalImagingBricklet
-Objekt mit der eindeutigen Geräte ID uid
und
fügt es der IP-Connection ip_connection
hinzu:
let thermal_imaging = ThermalImagingBricklet::new("YOUR_DEVICE_UID", &ip_connection);
Dieses Geräteobjekt kann benutzt werden, nachdem die IP-Connection verbunden.
ThermalImagingBricklet::
get_high_contrast_image
(&self) → Result<Vec<u8>, BrickletRecvTimeoutError>¶Rückgabe: |
|
---|
Gibt das aktuelle High Contrast Image zurück. Siehe hier für eine Beschreibung des Unterschieds zwischen High Contrast Image und einem Temperature Image. Wenn unbekannt ist welche Darstellungsform genutzt werden soll, ist vermutlich das High Contrast Image die richtige form.
Die Daten der 80x60 Pixel-Matrix werden als ein eindimensionales Array bestehend aus 8-Bit Werten dargestellt. Die Daten sind Zeile für Zeile von oben links bis unten rechts angeordnet.
Jeder 8-Bit Wert stellt ein Pixel aus dem Grauwertbild dar und kann als solcher direkt dargestellt werden.
Bevor die Funktion genutzt werden kann muss diese mittels
ThermalImagingBricklet::set_image_transfer_config
aktiviert werden.
ThermalImagingBricklet::
get_temperature_image
(&self) → Result<Vec<u16>, BrickletRecvTimeoutError>¶Rückgabe: |
|
---|
Gibt das aktuelle Temperature Image zurück. See hier für eine Beschreibung des Unterschieds zwischen High Contrast und Temperature Image. Wenn unbekannt ist welche Darstellungsform genutzt werden soll, ist vermutlich das High Contrast Image die richtige Form.
Die Daten der 80x60 Pixel-Matrix werden als ein eindimensionales Array bestehend aus 16-Bit Werten dargestellt. Die Daten sind Zeile für Zeile von oben links bis unten rechts angeordnet.
Jeder 16-Bit Wert stellt eine Temperaturmessung in entweder Kelvin/10 oder
Kelvin/100 dar (abhängig von der Auflösung die mittels ThermalImagingBricklet::set_resolution
eingestellt wurde).
Bevor die Funktion genutzt werden kann muss diese mittels
ThermalImagingBricklet::set_image_transfer_config
aktiviert werden.
ThermalImagingBricklet::
get_statistics
(&self) → ConvertingReceiver<Statistics>¶Rückgabeobjekt: |
|
---|
Gibt die Spotmeter Statistiken, verschiedene Temperaturen, die aktuelle Auflösung und Status-Bits zurück.
Die Spotmeter Statistiken bestehen aus:
Die Temperaturen sind:
Die Auflösung ist entweder 0 bis 6553 Kelvin oder 0 bis 655 Kelvin. Ist die Auflösung ersteres, so ist die Auflösung Kelvin/10. Ansonsten ist sie Kelvin/100.
FFC (Flat Field Correction) Status:
Temperaturwarnungs-Status:
Die folgenden Konstanten sind für diese Funktion verfügbar:
Für resolution:
Für ffc_status:
ThermalImagingBricklet::
set_resolution
(&self, resolution: u8) → ConvertingReceiver<()>¶Parameter: |
|
---|
Setzt die Auflösung. Das Thermal Imaging Bricklet kann entweder
Die Genauigkeit ist spezifiziert von -10°C bis 450°C im ersten Auflösungsbereich und von -10°C bis 140°C im zweiten Bereich.
Die folgenden Konstanten sind für diese Funktion verfügbar:
Für resolution:
ThermalImagingBricklet::
get_resolution
(&self) → ConvertingReceiver<u8>¶Rückgabe: |
|
---|
Gibt die Auflösung zurück, wie von ThermalImagingBricklet::set_resolution
gesetzt.
Die folgenden Konstanten sind für diese Funktion verfügbar:
Für resolution:
ThermalImagingBricklet::
set_spotmeter_config
(&self, region_of_interest: [u8; 4]) → ConvertingReceiver<()>¶Parameter: |
|
---|
Setzt die Spotmeter Region (Spotmeter Region of Interest). Die 4 Werte sind
Die Spotmeter Statistiken können mittels ThermalImagingBricklet::get_statistics
ausgelesen werden.
ThermalImagingBricklet::
get_spotmeter_config
(&self) → ConvertingReceiver<[u8; 4]>¶Rückgabeobjekt: |
|
---|
Gibt die Spotmeter Konfiguration zurück, wie von ThermalImagingBricklet::set_spotmeter_config
gesetzt.
ThermalImagingBricklet::
set_high_contrast_config
(&self, region_of_interest: [u8; 4], dampening_factor: u16, clip_limit: [u16; 2], empty_counts: u16) → ConvertingReceiver<()>¶Parameter: |
|
---|
Setzt die Region of Interest für das High Contrast Image, den Dampening Faktor, das
Clip Limit und die Empty Counts. Diese Konfiguration wird nur im High Contrast Modus
genutzt (siehe ThermalImagingBricklet::set_image_transfer_config
).
Die High Contrast Region of Interest besteht aus vier Werten:
Der Algorithmus zum Erzeugen eines High Contrast Images wird auf diese Region angewandt.
Dampening Factor: Dieser Parameter stellt die Stärke der zeitlichen Dämpfung dar, die auf der HEQ (History Equalization) Transformationsfunktion angewendet wird. Ein IIR-Filter der Form:
(N / 256) * transformation_zuvor + ((256 - N) / 256) * transformation_aktuell
wird dort angewendet. Der HEQ Dämpfungsfaktor stellt dabei den Wert N in der Gleichung dar. Der Faktor stellt also ein, wie stark der Einfluss der vorherigen HEQ Transformation auf die aktuelle ist. Umso niedriger der Wert von N um so größer ist der Einfluss des aktuellen Bildes. Umso größer der Wert von N umso kleiner ist der Einfluss der vorherigen Dämpfungs-Transferfunktion.
Clip Limit Index 0 (AGC HEQ Clip Limit High): Dieser Parameter definiert die maximale Anzahl an Pixeln, die sich in jeder Histogrammklasse sammeln dürfen. Jedes weitere Pixel wird verworfen. Der Effekt dieses Parameters ist den Einfluss von stark gefüllten Klassen in der HEQ Transformation zu beschränken.
Clip Limit Index 1 (AGC HEQ Clip Limit Low): Dieser Parameter definiert einen künstliche Menge, die jeder nicht leeren Histogrammklasse hinzugefügt wird. Wenn Clip Limit Low mit L dargestellt wird, so erhält jede Klasse mit der aktuellen Menge X die effektive Menge L + X. Jede Klasse, die nahe einer gefüllten Klasse ist erhält die Menge L. Der Effekt von höheren Werten ist eine stärkere lineare Transferfunktion bereitzustellen. Niedrigere Werte führen zu einer nichtlinearen Transferfunktion.
Empty Counts: Dieser Parameter spezifiziert die maximale Anzahl von Pixeln in einer Klasse, damit die Klasse als leere Klasse interpretiert wird. Jede Histogrammklasse mit dieser Anzahl an Pixeln oder weniger wird als leere Klasse behandelt.
ThermalImagingBricklet::
get_high_contrast_config
(&self) → ConvertingReceiver<HighContrastConfig>¶Rückgabeobjekt: |
|
---|
Gibt die High Contrast Konfiguration zurück, wie von
ThermalImagingBricklet::set_high_contrast_config
gesetzt.
ThermalImagingBricklet::
set_flux_linear_parameters
(&self, scene_emissivity: u16, temperature_background: u16, tau_window: u16, temperatur_window: u16, tau_atmosphere: u16, temperature_atmosphere: u16, reflection_window: u16, temperature_reflection: u16) → ConvertingReceiver<()>¶Parameter: |
|
---|
Setzt die Flux-Linear-Parmaeter die für eine Radiometrie-Kalibrierung benötigt werden.
Siehe FLIR-Dokument 102-PS245-100-01 für mehr Informationen.
Neu in Version 2.0.5 (Plugin).
ThermalImagingBricklet::
get_flux_linear_parameters
(&self) → ConvertingReceiver<FluxLinearParameters>¶Rückgabeobjekt: |
|
---|
Gibt die Flux-Linear-Parameter zurück, wie von ThermalImagingBricklet::set_flux_linear_parameters
gesetzt.
Neu in Version 2.0.5 (Plugin).
ThermalImagingBricklet::
set_ffc_shutter_mode
(&self, shutter_mode: u8, temp_lockout_state: u8, video_freeze_during_ffc: bool, ffc_desired: bool, elapsed_time_since_last_ffc: u32, desired_ffc_period: u32, explicit_cmd_to_open: bool, desired_ffc_temp_delta: u16, imminent_delay: u16) → ConvertingReceiver<()>¶Parameter: |
|
---|
Setzt die FFC-Shutter-Mode Parameter.
Siehe FLIR-Dokument 110-0144-03 4.5.15 für mehr Informationen.
Die folgenden Konstanten sind für diese Funktion verfügbar:
Für shutter_mode:
Für temp_lockout_state:
Neu in Version 2.0.6 (Plugin).
ThermalImagingBricklet::
get_ffc_shutter_mode
(&self) → ConvertingReceiver<FfcShutterMode>¶Rückgabeobjekt: |
|
---|
Setzt die FFC-Shutter-Mode Parameter.
Siehe FLIR-Dokument 110-0144-03 4.5.15 für mehr Informationen.
Die folgenden Konstanten sind für diese Funktion verfügbar:
Für shutter_mode:
Für temp_lockout_state:
Neu in Version 2.0.6 (Plugin).
ThermalImagingBricklet::
run_ffc_normalization
(&self) → ConvertingReceiver<()>¶Startet die Flat-Field Correction (FFC) Normalisierung.
Siehe FLIR-Dokument 110-0144-03 4.5.16 für mehr Informationen.
Neu in Version 2.0.6 (Plugin).
ThermalImagingBricklet::
get_spitfp_error_count
(&self) → ConvertingReceiver<SpitfpErrorCount>¶Rückgabeobjekt: |
|
---|
Gibt die Anzahl der Fehler die während der Kommunikation zwischen Brick und Bricklet aufgetreten sind zurück.
Die Fehler sind aufgeteilt in
Die Fehlerzähler sind für Fehler die auf der Seite des Bricklets auftreten. Jedes Brick hat eine ähnliche Funktion welche die Fehler auf Brickseite ausgibt.
ThermalImagingBricklet::
set_status_led_config
(&self, config: u8) → ConvertingReceiver<()>¶Parameter: |
|
---|
Setzt die Konfiguration der Status-LED. Standardmäßig zeigt die LED die Kommunikationsdatenmenge an. Sie blinkt einmal auf pro 10 empfangenen Datenpaketen zwischen Brick und Bricklet.
Die LED kann auch permanent an/aus gestellt werden oder einen Herzschlag anzeigen.
Wenn das Bricklet sich im Bootlodermodus befindet ist die LED aus.
Die folgenden Konstanten sind für diese Funktion verfügbar:
Für config:
ThermalImagingBricklet::
get_status_led_config
(&self) → ConvertingReceiver<u8>¶Rückgabe: |
|
---|
Gibt die Konfiguration zurück, wie von ThermalImagingBricklet::set_status_led_config
gesetzt.
Die folgenden Konstanten sind für diese Funktion verfügbar:
Für config:
ThermalImagingBricklet::
get_chip_temperature
(&self) → ConvertingReceiver<i16>¶Rückgabe: |
|
---|
Gibt die Temperatur, gemessen im Mikrocontroller, aus. Der Rückgabewert ist nicht die Umgebungstemperatur.
Die Temperatur ist lediglich proportional zur echten Temperatur und hat eine hohe Ungenauigkeit. Daher beschränkt sich der praktische Nutzen auf die Indikation von Temperaturveränderungen.
ThermalImagingBricklet::
reset
(&self) → ConvertingReceiver<()>¶Ein Aufruf dieser Funktion setzt das Bricklet zurück. Nach einem Neustart sind alle Konfiguration verloren.
Nach dem Zurücksetzen ist es notwendig neue Objekte zu erzeugen, Funktionsaufrufe auf bestehenden führen zu undefiniertem Verhalten.
ThermalImagingBricklet::
get_identity
(&self) → ConvertingReceiver<Identity>¶Rückgabeobjekt: |
|
---|
Gibt die UID, die UID zu der das Bricklet verbunden ist, die Position, die Hard- und Firmware Version sowie den Device Identifier zurück.
Die Position ist 'a', 'b', 'c', 'd', 'e', 'f', 'g' oder 'h' (Bricklet Anschluss). Ein Bricklet hinter einem Isolator Bricklet ist immer an Position 'z'.
Eine Liste der Device Identifier Werte ist hier zu finden. Es gibt auch eine Konstante für den Device Identifier dieses Bricklets.
ThermalImagingBricklet::
set_image_transfer_config
(&self, config: u8) → ConvertingReceiver<()>¶Parameter: |
|
---|
Die notwendige Bandbreite für dieses Bricklet ist zu groß um Getter/Callbacks oder High Contrast/Temperature Images gleichzeitig zu nutzen. Daher muss konfiguriert werden was genutzt werden soll. Das Bricklet optimiert seine interne Konfiguration anschließend dahingehend.
Zugehörige Funktionen:
ThermalImagingBricklet::get_high_contrast_image
.ThermalImagingBricklet::get_temperature_image
.ThermalImagingBricklet::get_high_contrast_image_callback_receiver
callback.ThermalImagingBricklet::get_temperature_image_callback_receiver
callback.Die folgenden Konstanten sind für diese Funktion verfügbar:
Für config:
ThermalImagingBricklet::
get_image_transfer_config
(&self) → ConvertingReceiver<u8>¶Rückgabe: |
|
---|
Gibt die Image Transfer Konfiguration zurück, wie von ThermalImagingBricklet::set_image_transfer_config
gesetzt.
Die folgenden Konstanten sind für diese Funktion verfügbar:
Für config:
Callbacks können registriert werden um zeitkritische oder wiederkehrende Daten vom Gerät zu erhalten. Die Registrierung kann mit der entsprechenden get_*_callback_receiver-Function durchgeführt werden, welche einen Receiver für Callback-Events zurück gibt.
Bemerkung
Callbacks für wiederkehrende Ereignisse zu verwenden ist immer zu bevorzugen gegenüber der Verwendung von Abfragen. Es wird weniger USB-Bandbreite benutzt und die Latenz ist erheblich geringer, da es keine Paketumlaufzeit gibt.
ThermalImagingBricklet::
get_high_contrast_image_callback_receiver
(&self) → ConvertingHighLevelCallbackReceiver<u8, HighContrastImageResult, HighContrastImageLowLevelEvent>¶Event: |
|
---|
Receiver die mit dieser Funktion erstellt werden, empfangen High Contrast Image-Events.
Dieser Callback wird für jedes neue High Contrast Image ausgelöst, wenn die
Transfer Image Config für diesen Callback konfiguriert wurde (siehe
ThermalImagingBricklet::set_image_transfer_config
).
Die Daten der 80x60 Pixel-Matrix werden als ein eindimensionales Array bestehend aus 8-Bit Werten dargestellt. Die Daten sind Zeile für Zeile von oben links bis unten rechts angeordnet.
Jeder 8-Bit Wert stellt ein Pixel aus dem Grauwertbild dar und kann als solcher direkt dargestellt werden.
ThermalImagingBricklet::
get_temperature_image_callback_receiver
(&self) → ConvertingHighLevelCallbackReceiver<u16, TemperatureImageResult, TemperatureImageLowLevelEvent>¶Event: |
|
---|
Receiver die mit dieser Funktion erstellt werden, empfangen Temperature Image-Events.
Dieser Callback wird für jedes neue Temperature Image ausgelöst, wenn die Transfer
Image Config für diesen Callback konfiguriert wurde (siehe
ThermalImagingBricklet::set_image_transfer_config
).
Die Daten der 80x60 Pixel-Matrix werden als ein eindimensionales Array bestehend aus 16-Bit Werten dargestellt. Die Daten sind Zeile für Zeile von oben links bis unten rechts angeordnet.
Jeder 16-Bit Wert stellt ein Pixel aus dem Temperatur Bild dar und kann als solcher direkt dargestellt werden.
Virtuelle Funktionen kommunizieren nicht mit dem Gerät selbst, sie arbeiten nur auf dem API Bindings Objekt. Dadurch können sie auch aufgerufen werden, ohne das das dazugehörige IP Connection Objekt verbunden ist.
ThermalImagingBricklet::
get_api_version
(&self) → [u8; 3]¶Rückgabeobjekt: |
|
---|
Gibt die Version der API Definition zurück, die diese API Bindings implementieren. Dies ist weder die Release-Version dieser API Bindings noch gibt es in irgendeiner Weise Auskunft über den oder das repräsentierte(n) Brick oder Bricklet.
ThermalImagingBricklet::
get_response_expected
(&mut self, function_id: u8) → bool¶Parameter: |
|
---|---|
Rückgabe: |
|
Gibt das Response-Expected-Flag für die Funktion mit der angegebenen Funktions IDs zurück. Es ist true falls für die Funktion beim Aufruf eine Antwort erwartet wird, false andernfalls.
Für Getter-Funktionen ist diese Flag immer gesetzt und kann nicht entfernt
werden, da diese Funktionen immer eine Antwort senden. Für
Konfigurationsfunktionen für Callbacks ist es standardmäßig gesetzt, kann aber
entfernt werden mittels ThermalImagingBricklet::set_response_expected
. Für Setter-Funktionen ist
es standardmäßig nicht gesetzt, kann aber gesetzt werden.
Wenn das Response-Expected-Flag für eine Setter-Funktion gesetzt ist, können Timeouts und andere Fehlerfälle auch für Aufrufe dieser Setter-Funktion detektiert werden. Das Gerät sendet dann eine Antwort extra für diesen Zweck. Wenn das Flag für eine Setter-Funktion nicht gesetzt ist, dann wird keine Antwort vom Gerät gesendet und Fehler werden stillschweigend ignoriert, da sie nicht detektiert werden können.
Die folgenden Konstanten sind für diese Funktion verfügbar:
Für function_id:
ThermalImagingBricklet::
set_response_expected
(&mut self, function_id: u8, response_expected: bool) → ()¶Parameter: |
|
---|
Ändert das Response-Expected-Flag für die Funktion mit der angegebenen Funktion IDs. Diese Flag kann nur für Setter-Funktionen (Standardwert: false) und Konfigurationsfunktionen für Callbacks (Standardwert: true) geändert werden. Für Getter-Funktionen ist das Flag immer gesetzt.
Wenn das Response-Expected-Flag für eine Setter-Funktion gesetzt ist, können Timeouts und andere Fehlerfälle auch für Aufrufe dieser Setter-Funktion detektiert werden. Das Gerät sendet dann eine Antwort extra für diesen Zweck. Wenn das Flag für eine Setter-Funktion nicht gesetzt ist, dann wird keine Antwort vom Gerät gesendet und Fehler werden stillschweigend ignoriert, da sie nicht detektiert werden können.
Die folgenden Konstanten sind für diese Funktion verfügbar:
Für function_id:
ThermalImagingBricklet::
set_response_expected_all
(&mut self, response_expected: bool) → ()¶Parameter: |
|
---|
Ändert das Response-Expected-Flag für alle Setter-Funktionen und Konfigurationsfunktionen für Callbacks diese Gerätes.
Interne Funktionen werden für Wartungsaufgaben, wie zum Beispiel das Flashen einer neuen Firmware oder das Ändern der UID eines Bricklets, verwendet. Diese Aufgaben sollten mit Brick Viewer durchgeführt werden, anstelle die internen Funktionen direkt zu verwenden.
ThermalImagingBricklet::
set_bootloader_mode
(&self, mode: u8) → ConvertingReceiver<u8>¶Parameter: |
|
---|---|
Rückgabe: |
|
Setzt den Bootloader-Modus und gibt den Status zurück nachdem die Modusänderungsanfrage bearbeitet wurde.
Mit dieser Funktion ist es möglich vom Bootloader- in den Firmware-Modus zu wechseln und umgekehrt. Ein Welchsel vom Bootloader- in der den Firmware-Modus ist nur möglich wenn Entry-Funktion, Device Identifier und CRC vorhanden und korrekt sind.
Diese Funktion wird vom Brick Viewer während des Flashens benutzt. In einem normalem Nutzerprogramm sollte diese Funktion nicht benötigt werden.
Die folgenden Konstanten sind für diese Funktion verfügbar:
Für mode:
Für status:
ThermalImagingBricklet::
get_bootloader_mode
(&self) → ConvertingReceiver<u8>¶Rückgabe: |
|
---|
Gibt den aktuellen Bootloader-Modus zurück, siehe ThermalImagingBricklet::set_bootloader_mode
.
Die folgenden Konstanten sind für diese Funktion verfügbar:
Für mode:
ThermalImagingBricklet::
set_write_firmware_pointer
(&self, pointer: u32) → ConvertingReceiver<()>¶Parameter: |
|
---|
Setzt den Firmware-Pointer für ThermalImagingBricklet::write_firmware
. Der Pointer
muss um je 64 Byte erhöht werden. Die Daten werden alle 4 Datenblöcke
in den Flash geschrieben (4 Datenblöcke entsprechen einer Page mit 256 Byte).
Diese Funktion wird vom Brick Viewer während des Flashens benutzt. In einem normalem Nutzerprogramm sollte diese Funktion nicht benötigt werden.
ThermalImagingBricklet::
write_firmware
(&self, data: [u8; 64]) → ConvertingReceiver<u8>¶Parameter: |
|
---|---|
Rückgabe: |
|
Schreibt 64 Bytes Firmware an die Position die vorher von
ThermalImagingBricklet::set_write_firmware_pointer
gesetzt wurde. Die Firmware wird
alle 4 Datenblöcke in den Flash geschrieben.
Eine Firmware kann nur im Bootloader-Mode geschrieben werden.
Diese Funktion wird vom Brick Viewer während des Flashens benutzt. In einem normalem Nutzerprogramm sollte diese Funktion nicht benötigt werden.
ThermalImagingBricklet::
write_uid
(&self, uid: u32) → ConvertingReceiver<()>¶Parameter: |
|
---|
Schreibt eine neue UID in den Flash. Die UID muss zuerst vom Base58 encodierten String in einen Integer decodiert werden.
Wir empfehlen die Nutzung des Brick Viewers zum ändern der UID.
ThermalImagingBricklet::
read_uid
(&self) → ConvertingReceiver<u32>¶Rückgabe: |
|
---|
Gibt die aktuelle UID als Integer zurück. Dieser Integer kann als Base58 encodiert werden um an den üblichen UID-String zu gelangen.
ThermalImagingBricklet::
DEVICE_IDENTIFIER
¶Diese Konstante wird verwendet um ein Thermal Imaging Bricklet zu identifizieren.
Die ThermalImagingBricklet::get_identity
Funktion und der IpConnection::get_enumerate_callback_receiver
Callback der IP Connection haben ein device_identifier
Parameter um den Typ
des Bricks oder Bricklets anzugeben.
ThermalImagingBricklet::
DEVICE_DISPLAY_NAME
¶Diese Konstante stellt den Anzeigenamen eines Thermal Imaging Bricklet dar.